首页> 外文OA文献 >A Novel Event-Based Incipient Slip Detection Using Dynamic Active-Pixel Vision Sensor (DAVIS)
【2h】

A Novel Event-Based Incipient Slip Detection Using Dynamic Active-Pixel Vision Sensor (DAVIS)

机译:使用动态有源像素视觉传感器(DAVIS)的基于事件的初始滑动检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a novel approach to detect incipient slip based on the contact area between a transparent silicone medium and different objects using a neuromorphic event-based vision sensor (DAVIS) is proposed. Event-based algorithms are developed to detect incipient slip, slip, stress distribution and object vibration. Thirty-seven experiments were performed on five objects with different sizes, shapes, materials and weights to compare precision and response time of the proposed approach. The proposed approach is validated by using a high speed constitutional camera (1000 FPS). The results indicate that the sensor can detect incipient slippage with an average of 44.1 ms latency in unstructured environment for various objects. It is worth mentioning that the experiments were conducted in an uncontrolled experimental environment, therefore adding high noise levels that affected results significantly. However, eleven of the experiments had a detection latency below 10 ms which shows the capability of this method. The results are very promising and show a high potential of the sensor being used for manipulation applications especially in dynamic environments.
机译:本文提出了一种基于使用基于神经形态事件的视觉传感器(DAVIS)的透明硅氧烷介质和不同物体之间的接触面积来检测初始滑动的新方法。开发了基于事件的算法以检测初始滑动,滑动,应力分布和对象振动。在具有不同尺寸,形状,材料和重量的五个物体上进行三十七个实验,以比较所提出的方法的精度和响应时间。通过使用高速构成相机(1000 fps)验证所提出的方法。结果表明,该传感器可以在非结构化环境中平均检测初始滑动,用于各种物体。值得一提的是,实验在不受控制的实验环境中进行,因此增加了显着影响结果的高噪声水平。然而,11个实验的110毫秒的检测潜伏期显示出该方法的能力。结果非常有前途,并且显示出用于操纵应用的传感器的高潜力,特别是在动态环境中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号