首页> 外文OA文献 >Taming the Unknown Unknowns in Complex Systems: Challenges and Opportunities for Modeling, Analysis and Control of Complex (Biological) Collectives
【2h】

Taming the Unknown Unknowns in Complex Systems: Challenges and Opportunities for Modeling, Analysis and Control of Complex (Biological) Collectives

机译:在复杂系统中驯服未知的未知数:复杂(生物)集体的建模,分析和控制的挑战和机会

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite significant effort on understanding complex biological systems, we lack a unified theory for modeling, inference, analysis, and efficient control of their dynamics in uncertain environments. These problems are made even more challenging when considering that only limited and noisy information is accessible for modeling, which can prove insufficient for explaining, and predicting the behavior of complex systems. For instance, missing information hampers the capabilities of analytical tools to uncover the true degrees of freedom and infer the model structure and parameters of complex biological systems. Toward this end, in this paper, we discuss several important mathematical challenges that could open new theoretical avenues in studying complex systems: (1) By understanding the universal laws characterizing the asymmetric statistics of magnitude increments and the complex space-time interdependency within one process and across many processes, we can develop a class of compact yet accurate mathematical models capable to potentially providing higher degree of predictability, and more efficient control strategies. (2) In order to better predict the onset of disease and their root cause, as well as potentially discover more efficient quality-of-life (QoL)-control strategies, we need to develop mathematical strategies that not only are capable to discover causal interactions and their corresponding mathematical expressions for space and time operators acting on biological processes, but also mathematical and algorithmic techniques to identify the number of unknown unknowns (UUs) and their interdependency with the observed variables. (3) Lastly, to improve the QoL of control strategies when facing intra- and inter-patient variability, the focus should not only be on specific values and ranges for biological processes, but also on optimizing/controlling knob variables that enforce a specific spatiotemporal multifractal behavior that corresponds to an initial healthy (patient specific) behavior. All in all, the modeling, analysis and control of complex biological collective systems requires a deeper understanding of the multifractal properties of high dimensional heterogeneous and noisy data streams and new algorithmic tools that exploit geometric, statistical physics, and information theoretic concepts to deal with these data challenges.
机译:尽管在理解复杂的生物系统显著的努力,我们缺乏建模,推理,分析,以及他们在不确定的环境中动态的有效控制的统一理论。这些问题是由当考虑更具挑战性,只有有限的,嘈杂的信息建模访问,这可以证明不足以解释和预测复杂系统的行为。举例来说,信息缺失阻碍了分析工具的功能,露出真正的自由度和推断模型结构和复杂的生物系统的参数。为此,在本文中,我们将讨论可能在研究复杂系统打开新的理论途径几个重要的数学问题:(1)通过了解一个进程中的普遍规律特征幅度增量的不对称统计数据和复杂的时空相互依存而在许多流程,我们可以开发出能够类潜在提供可预测性较高紧凑而精确的数学模型,并更有效的控制策略。 (2)为了更好地预测疾病及其根源的发生,以及可能发现更有效的质量的生活(生活质量) - 控制策略,我们需要制定战略,数学,不仅能够发现因果相互作用和作用于生物过程的空间和时间运营商及其相应的数学表达式,也数学和算法技术来识别未知的未知的(UUS)与观察到的变量的数目和它们的相互依赖性。 (3)最后,为了提高生活质量的控制策略面向内和患者间可变性的情况下,焦点不仅应该对生物过程特定的值和范围,同时也对优化/控制该执行特定时空旋钮变量多重行为对应于一个初始健康(患者特异性的)行为。总而言之,建模,分析和复杂的生物集体系统的控制需要更深层次的高维异构和嘈杂的数据流,并利用几何,统计物理学的新算法工具和信息理论概念的多重分形特征来处理这些理解数据挑战。

著录项

  • 作者

    Paul Bogdan;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号