首页> 外文OA文献 >Data-Driven Load Forecasting of Air Conditioners for Demand Response Using Levenberg–Marquardt Algorithm-Based ANN
【2h】

Data-Driven Load Forecasting of Air Conditioners for Demand Response Using Levenberg–Marquardt Algorithm-Based ANN

机译:基于Levenberg-Marquardt算法的需求响应的空调数据驱动负荷预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Air Conditioners (AC) impact in overall electricity consumption in buildings is very high. Therefore, controlling ACs power consumption is a significant factor for demand response. With the advancement in the area of demand side management techniques implementation and smart grid, precise AC load forecasting for electrical utilities and end-users is required. In this paper, big data analysis and its applications in power systems is introduced. After this, various load forecasting categories and various techniques applied for load forecasting in context of big data analysis in power systems have been explored. Then, Levenberg−Marquardt Algorithm (LMA)-based Artificial Neural Network (ANN) for residential AC short-term load forecasting is presented. This forecasting approach utilizes past hourly temperature observations and AC load as input variables for assessment. Different performance assessment indices have also been investigated. Error formulations have shown that LMA-based ANN presents better results in comparison to Scaled Conjugate Gradient (SCG) and statistical regression approach. Furthermore, information of AC load is obtainable for different time horizons like weekly, hourly, and monthly bases due to better prediction accuracy of LMA-based ANN, which is helpful for efficient demand response (DR) implementation.
机译:空调(AC)在建筑物上整体电力消耗的影响非常高。因此,控制ACS功耗是需求响应的重要因素。随着需求侧管理技术领域的进步实现和智能电网,需要对电气公用事业和最终用户进行精确的交流负荷预测。本文介绍了大数据分析及其在电力系统中的应用。此后,已经探讨了在电力系统中大数据分析的大数据分析中应用于负载预测的各种负载预测类别和各种技术。然后,介绍了Levenberg-Marquardt算法(LMA)基于住宅交流短期负荷预测的基于人工神经网络(ANN)。该预测方法利用过去的每小时温度观察和AC负载作为评估的输入变量。还调查了不同的性能评估指数。错误配方表明,基于LMA的ANN与缩放的共轭梯度(SCG)和统计回归方法相比具有更好的结果。此外,由于LMA的ANN的更好的预测准确性,因此,AC负载的信息可用于每周,每小时和每月基础,这是有助于高效的需求响应(DR)实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号