首页> 外文OA文献 >Mixing times of organic molecules within secondary organic aerosol particles: a global planetary boundary layer perspective
【2h】

Mixing times of organic molecules within secondary organic aerosol particles: a global planetary boundary layer perspective

机译:次级有机气溶胶颗粒中有机分子的混合时间:全球行星边界层透视

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When simulating the formation and life cycle of secondary organicaerosol (SOA) with chemical transport models, it is often assumedthat organic molecules are well mixed within SOA particles on thetimescale of 1 h. While this assumption has been debatedvigorously in the literature, the issue remains unresolved in partdue to a lack of information on the mixing times within SOAparticles as a function of both temperature and relativehumidity. Using laboratory data, meteorological fields, anda chemical transport model, we estimated how often mixing timesare   1 h within SOA in the planetary boundary layer(PBL), the region of the atmosphere where SOA concentrations are onaverage the highest. First, a parameterization for viscosity asa function of temperature and RH was developed for -pineneSOA using room-temperature and low-temperature viscosity data for-pinene SOA generated in the laboratory using massconcentrations of  ∼ 1000 µg m. Based on thisparameterization, the mixing times within -pinene SOAare   1 h for 98.5 % and 99.9 % of theoccurrences in the PBL during January and July, respectively, whenconcentrations are significant (total organic aerosol concentrationsare   0.5 µg m at the surface). Next, asa starting point to quantify how often mixing times of organicmolecules are   1 h within -pinene SOA generatedusing low, atmospherically relevant mass concentrations, wedeveloped a temperature-independent parameterization for viscosityusing the room-temperature viscosity data for -pinene SOAgenerated in the laboratory using a mass concentration of  ∼ 70 µg m. Based on this temperature-independentparameterization, mixing times within -pinene SOA are   1 h for 27 and 19.5 % of the occurrences in the PBLduring January and July, respectively, when concentrations aresignificant. However, associated with these conclusions are severalcaveats, and due to these caveats we are unable to make strongconclusions about how often mixing times of organic moleculesare   1 h within -pinene SOA generated using low,atmospherically relevant mass concentrations. Finally,a parameterization for viscosity of anthropogenic SOA as a functionof temperature and RH was developed using sucrose–water data. Basedon this parameterization, and assuming sucrose is a good proxy foranthropogenic SOA, 70 and 83 % of the mixing times withinanthropogenic SOA in the PBL are   1 h for January andJuly, respectively, when concentrations are significant. Thesepercentages are likely lower limits due to the assumptions used tocalculate mixing times.
机译:当使用化学迁移模型模拟次生有机气溶胶(SOA)的形成和生命周期时,通常假定有机分子在1 h的时间尺度内在SOA颗粒内充分混合。尽管这一假设已在文献中进行了激烈的辩论,但由于缺少关于SOA颗粒内混合时间的信息(温度和相对湿度的函数),因此该问题仍未得到解决。利用实验室数据,气象场和化学迁移模型,我们估算了行星边界层(PBL)中SOA内混合时间<1 h的频率,这是SOA浓度平均最高的大气区域。首先,利用实验室中生成的-烯SOA的室温和低温粘度数据,以〜1000μgm的质量浓度,对-pineneSOA的粘度随温度和RH的函数进行了参数化。基于此参数,当浓度显着时(在表面总有机气溶胶浓度为> 0.5μgm),在1月和7月,Ppine中SOA内的混合时间分别为<1 h 9 98.5%和99.9%。接下来,作为量化在低大气相关质量浓度下生成的-pine烯SOA中有机分子的混合时间为<1 h的起点,我们利用实验室生成的-pine烯SOA的室温粘度数据开发了温度独立的粘度参数化方法质量浓度为〜70μgm。基于这种与温度无关的参数,在1月和7月,浓度显着的PBL中,pine烯SOA中的混合时间分别为<1 h和27.5%(19.5%)。然而,与这些结论相关的是一些警告,并且由于这些警告,我们无法就在低大气相关质量浓度下生成的-pine烯SOA中有机分子的混合时间<1 h的频率做出强有力的结论。最后,使用蔗糖-水数据开发了人为SOA粘度随温度和RH变化的参数化方法。基于此参数化,并假设蔗糖是人为SOA的良好替代物,当浓度很高时,PBL中人为SOA中70%和83%的混合时间分别在1月和7月为<1 h。由于用于计算混合时间的假设,这些百分比可能是下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号