首页> 外文OA文献 >A self‐excited threshold autoregressive state‐space model for menstrual cycles: Forecasting menstruation and identifying within‐cycle stages based on basal body temperature
【2h】

A self‐excited threshold autoregressive state‐space model for menstrual cycles: Forecasting menstruation and identifying within‐cycle stages based on basal body temperature

机译:一种用于月经周期的自我激发阈值自回归状态模型:预测月经和基于基础体温的循环阶段识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The menstrual cycle is composed of the follicular phase and subsequent lutealphase based on events occurring in the ovary. Basal body temperature (BBT)reflects this biphasic aspect of menstrual cycle and tends to be relatively lowduring the follicular phase. In the present study, we proposed a state-spacemodel that explicitly incorporates the biphasic nature of the menstrual cycle,in which the probability density distributions for the advancement of themenstrual phase and that for BBT switch depend on a latent state variable. Ourmodel derives the predictive distribution of the day of the next menstruationonset that is adaptively adjusted by accommodating new observations of BBTsequentially. It also enables us to obtain conditional probabilities of thewoman being in the early or late stages of the cycle, which can be used toidentify the duration of follicular and luteal phases, as well as to estimatethe day of ovulation. By applying the model to real BBT and menstruation data,we show that the proposed model can properly capture the biphasiccharacteristics of menstrual cycles, providing a good prediction of themenstruation onset in a wide range of age groups. An application to a largedata set containing 25,622 cycles provided by 3,533 woman subjects furtherhighlighted the between-age differences in the population characteristics ofmenstrual cycles, suggesting wide applicability of the proposed model.
机译:月经周期由卵泡相和随后的LuteAlphase组成,基于卵巢发生的事件。基础体温(BBT)反映了月经周期的这种双相方面,往往是相对较低的卵泡相。在本研究中,我们提出了一种状态 - spaceModel,其明确地掺入月经周期的双相性质,其中用于对大量分子阶段的推进的概率密度分布以及BBT切换的概率密度分布取决于潜在状态变量。我们的德国通过通过适应BBT顺序的新观察,得到了完全调整的下一个MenstrationOnset的预测分布。它还使我们能够获得在循环早期或晚期阶段的妇女的有条件概率,这可以用于鉴定滤泡和肺部阶段的持续时间,以及估计排卵日。通过将模型应用于真实的BBT和月经数据,我们表明所提出的模型可以妥善捕获月经周期的双相色谱,在各种年龄组中提供了良好的主题发作。在3,533名女性受试者提供的含有25,622个循环的Largedata集合的应用程序,进一步高兴地在百年周期的人口特征中的年龄差异,这表明该模型的广泛适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号