首页> 外文OA文献 >Estimation of aerosol particle number distribution with Kalman Filtering – Part 2: Simultaneous use of DMPS, APS and nephelometer measurements
【2h】

Estimation of aerosol particle number distribution with Kalman Filtering – Part 2: Simultaneous use of DMPS, APS and nephelometer measurements

机译:用卡尔曼滤波估计气溶胶粒子数分布–第2部分:DMPS,APS和浊度仪测量的同时使用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extended Kalman Filter (EKF) is used to estimate particle size distributionsfrom observations. The focus here is on the practical application of EKF tosimultaneously merge information from different types of experimentalinstruments. Every 10 min, the prior state estimate is updated withsize-segregating measurements from Differential Mobility Particle Sizer(DMPS) and Aerodynamic Particle Sizer (APS) as well as integratingmeasurements from a nephelometer. Error covariances are approximate in ourEKF implementation. The observation operator assumes a constant particledensity and refractive index. The state estimates are compared to particlesize distributions that are a composite of DMPS and APS measurements. Theimpact of each instrument on the size distribution estimate is studied.Kalman Filtering of DMPS and APS yielded a temporally consistent stateestimate. This state estimate is continuous over the overlapping size rangeof DMPS and APS. Inclusion of the integrating measurements further reducesthe effect of measurement noise. Even with the present approximations, EKFis shown to be a very promising method to estimate particle sizedistribution with observations from different types of instruments.
机译:扩展卡尔曼滤波器(EKF)用于根据观测值估算粒径分布。这里的重点是EKF在同时合并来自不同类型的实验仪器的信息时的实际应用。每隔10分钟,将使用差分移动粒度仪(DMPS)和空气动力学粒度仪(APS)的粒度分离测量值以及比浊仪的积分测量值来更新先前状态估计值。在我们的EKF实现中,误差协方差是近似的。观测算子假设粒子密度和折射率恒定。将状态估计值与DMPS和APS测量结果的颗粒大小分布进行比较。研究了每种仪器对尺寸分布估计的影响。DMPS和APS的卡尔曼滤波产生了时间上一致的状态估计。该状态估计在DMPS和APS的重叠大小范围内是连续的。包含积分测量值进一步降低了测量噪声的影响。即使采用目前的近似值,EKFis仍然是一种非常有前途的方法,利用来自不同类型仪器的观察结果来估计粒径分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号