首页> 外文OA文献 >An automated nowcasting model of significant instability events in the flight terminal area of Rio de Janeiro, Brazil
【2h】

An automated nowcasting model of significant instability events in the flight terminal area of Rio de Janeiro, Brazil

机译:在巴西里约热内卢的飞行终点区域内重大失稳事件的自动临近预报模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a novel model, based on neural network techniques, to produceshort-term and local-specific forecasts of significant instability for flights in the terminal area of GaleãoAirport, Rio de Janeiro, Brazil. Twelve years of data were used for neuralnetwork training/validation and test. Data are originally from four sources:(1) hourly meteorological observations from surface meteorological stationsat five airports distributed around the study area; (2) atmospheric profilescollected twice a day at the meteorological station at Galeão Airport;(3) rain rate data collected from a network of 29 rain gauges in the studyarea; and (4) lightning data regularly collected by national detectionnetworks. An investigation was undertaken regarding the capability of aneural network to produce early warning signs – or as a nowcasting tool –for significant instability events in the study area. The automatednowcasting model was tested using results from five categorical statistics,indicated in parentheses in forecasts of the first, second, and third hours,respectively, namely proportion correct (0.99, 0.97, and 0.94), BIAS (1.10,1.42, and 2.31), the probability of detection (0.79, 0.78, and 0.67),false-alarm ratio (0.28, 0.45, and 0.73), and threat score (0.61, 0.47, and0.25). Possible sources of error related to the test procedure are presentedand discussed. The test showed that the proposed model (or neural network)can grab the physical content inside the data set, and its performance isquite encouraging for the first and second hours to nowcast significantinstability events in the study area.
机译:本文提出了一种基于神经网络技术的新颖模型,可以对巴西里约热内卢加莱昂机场的航站区航班的不稳定性产生短期和局部特定的预测。十二年的数据用于神经网络的训练/验证和测试。数据最初来自四个来源:(1)分布在研究区域周围的五个机场的地面气象站的每小时气象观测; (2)每天在Galeão机场的气象站收集两次大气廓线;(3)从研究区域的29个雨量计网络收集的降雨率数据; (4)国家检测网络定期收集的闪电数据。对神经网络为研究区域内重大不稳定事件产生预警信号(或作为临近预报工具)的能力进行了调查。使用五个分类统计的结果对自动播报模型进行了测试,分别在第一小时,第二小时和第三小时的括号中表示了比例正确(0.99、0.97和0.94),BIAS(1.10、1.42和2.31)。 ,检测到的概率(0.79、0.78和0.67),错误警报率(0.28、0.45和0.73)和威胁评分(0.61、0.47和0.25)。提出并讨论了与测试程序有关的可能错误源。测试表明,所提出的模型(或神经网络)可以获取数据集中的物理内容,并且在第一个小时和第二个小时的表现令人鼓舞,现在可以预测研究区域的重大不稳定事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号