首页> 外文OA文献 >Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China
【2h】

Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China

机译:日间未知的HONO源对中国沿海地区HONO与羟基,氢过氧化物和有机过氧自由基混合比例和预算的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many field experiments have found high nitrous acid (HONO) mixing ratios inboth urban and rural areas during daytime, but these high daytime HONOmixing ratios cannot be explained well by gas-phase production, HONOemissions, and nighttime hydrolysis conversion of nitrogen dioxide(NO) on aerosols, suggesting that an unknown daytime HONO source() could exist. The formula ≈ 19.60[NO] ·(NO) was obtained using observed data from 13 field experiments acrossthe globe. The three additional HONO sources (i.e., the ,nighttime hydrolysis conversion of NO on aerosols, and HONO emissions)were coupled into the WRF-Chem model (Weather Research and Forecasting modelcoupled with Chemistry) to assess the impacts on theconcentrations and budgets of HONO and peroxy (hydroxyl, hydroperoxyl, andorganic peroxy) radicals (RO) (= OH + HO + RO) inthe coastal regions of China. Results indicated that the additional HONOsources produced a significant improvement in HONO and OH simulations,particularly in the daytime. High daytime average values werefound in the coastal regions of China, with a maximum of 2.5 ppb h inthe Beijing–Tianjin–Hebei region. The produced a60–250 % increase of OH, HO, and RO near the ground in themajor cities of the coastal regions of China, and a 5–48 % increaseof OH, HO, and RO in the daytime meridional-mean mixing ratioswithin 1000 m above the ground. When the three additional HONO sources wereincluded, the photolysis of HONO was the second most important source in theOH production rate in Beijing, Shanghai, and Guangzhou before 10:00 LST witha maximum of 3.72 ppb h and a corresponding contribution of 3.06 ppb h in Beijing, whereas the reaction ofHO + NO (nitric oxide) was dominant after 10:00 LST with a maximumof 9.38 ppb h and a corresponding contribution of 7.23 ppb h in Beijing. The whole RO cycle was accelerated by thethree additional HONO sources, especially the . The daytimeaverage OH production rate was enhanced by 0.67 due to the three additionalHONO sources; [0.64], due to the , to 4.32 [3.86] ppb h, viathe reaction of HO + NO, and by 0.49 [0.47] to 1.86 [1.86] ppb h, via the photolysis of HONO. The OH daytime average loss ratewas enhanced by 0.58 [0.55] to 2.03 [1.92] ppb h, via the reaction ofOH + NO, and by 0.31 [0.28] to 1.78 [1.64] ppb h, via thereaction of OH + CO (carbon monoxide) in Beijing, Shanghai, and Guangzhou.Similarly, the three additional HONO sources produced an increase of 0.31[0.28] (with a corresponding contribution) to1.78 [1.64] ppb h, via the reaction of OH + CO, and 0.10 [0.09] to 0.63 [0.59] ppb h, via the reaction of CHO (methylperoxy radical) + NO in the daytime average HO production rate, and 0.67 [0.61] to 4.32[4.27] ppb h, via the reaction of HO + NO in the daytimeaverage HO loss rate in Beijing, Shanghai, and Guangzhou. The aboveresults suggest that the considerably enhanced the ROconcentrations and accelerated RO cycles in the coastal regions ofChina, and could produce significant increases in concentrations ofinorganic aerosols and secondary organic aerosols and further aggravate hazeevents in these regions.
机译:许多现场实验发现白天白天在城市和农村地区都有很高的亚硝酸(HONO)混合比,但是这些高的白天HONO混合比不能用气相生产,HONO排放和夜间二氧化氮(NO)的水解转化来很好地解释。气溶胶,表明可能存在未知的白天HONO source()。公式&rox;使用来自全球13个现场实验的观测数据获得了19.60 [NO]·(NO)。将WHO-Chem模型(天气研究和预报模型与化学结合)耦合到WRF-Chem模型(天气研究和预报模型与化学结合)中,另外三个HONO来源(即,NO在气溶胶上的夜间水解转化和HONO排放)被评估为对HONO和HNO浓度和预算的影响。中国沿海地区的过氧(羟基,氢过氧和有机过氧)自由基(RO)(= OH + HO + RO)。结果表明,额外的HONOsources在HONO和OH模拟中产生了显着改善,尤其是在白天。在中国沿海地区,白天的平均值很高,在北京-天津-河北地区最高为2.5 ppb h。在中国沿海主要城市附近,地面上的OH,HO和RO分别增加了60-250%,而在1000 m以内的白天子午平均混合比中,OH,HO和RO则增加了5-48%。高于地面。当包括另外三个HONO源时,HONO的光解是北京时间10:00 LST之前北京,上海和广州的OH生产率中第二重要的源,最高为3.72 ppb h,北京的对应贡献为3.06 ppb h在北京时间10:00 LST之后,HO + NO(一氧化氮)反应占主导地位,最高为9.38 ppb h,北京的贡献为7.23 ppb h。额外的三个HONO来源(尤其是)增加了整个RO周期。由于另外三个HONO来源,日间平均OH生产率提高了0.67。由于HO + NO的反应,[0.64]为4.32 [3.86] ppb·h,而HONO的光解为0.49 [0.47]至1.86 [1.86] ppb·h。通过OH + NO的反应,OH日间平均损失率提高了0.58 [0.55]至2.03 [1.92] ppb h,并通过OH + CO(一氧化碳)的反应而提高了0.31 [0.28]至1.78 [1.64] ppb h相似地,通过OH + CO的反应,另外三个HONO源通过OH + CO和0.10 []的作用,增加了0.31 [0.28] ppb h至1.37 [1.64] ppb h。通过白天平均HO生成率的CHO(甲基过氧自由基)+ NO反应,通过HO + NO反应,在0.09 [0.69]至0.63 [0.59] ppb h;通过HO + NO反应,在0.67 [0.61]至4.32 [4.27] ppb h北京,上海和广州的日均HO丢失率。以上结果表明,中国沿海地区的反渗透浓度大大提高,反渗透周期加快,并可能使无机气溶胶和次生有机气溶胶的浓度显着增加,并进一步加剧了这些地区的雾霾事件。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号