首页> 外文OA文献 >Comparing Kalman Filters and Observers for Power System Dynamic State Estimation With Model Uncertainty and Malicious Cyber Attacks
【2h】

Comparing Kalman Filters and Observers for Power System Dynamic State Estimation With Model Uncertainty and Malicious Cyber Attacks

机译:与模型不确定性和恶意网络攻击的电力系统动态状态估计比较卡尔曼滤波器和观察者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kalman filters and observers are two main classes of dynamic state estimation(DSE) routines. Power system DSE has been implemented by various Kalmanfilters, such as the extended Kalman filter (EKF) and the unscented Kalmanfilter (UKF). In this paper, we discuss two challenges for an effective powersystem DSE: (a) model uncertainty and (b) potential cyber attacks. To addressthis, the cubature Kalman filter (CKF) and a nonlinear observer are introducedand implemented. Various Kalman filters and the observer are then tested on the16-machine, 68-bus system given realistic scenarios under model uncertainty anddifferent types of cyber attacks against synchrophasor measurements. It isshown that CKF and the observer are more robust to model uncertainty and cyberattacks than their counterparts. Based on the tests, a thorough qualitativecomparison is also performed for Kalman filter routines and observers.
机译:卡尔曼过滤器和观察者是动态状态估计(DSE)例程的两个主要类。电力系统DSE已由各种KalmanFilters实现,例如扩展卡尔曼滤波器(EKF)和Unscented KalmanFilter(UKF)。在本文中,我们讨论了有效的权力系统DSE的两个挑战:(a)模型不确定性和(b)潜在的网络攻击。到地址,介绍了Cubature Kalman滤波器(CKF)和非线性观察者。然后在The16机器上测试各种卡尔曼滤波器和观察者,在The16机器,68总线系统上给出了模型不确定性和不同的网络攻击的现实情景,用于针对同步擦手测量的网络攻击。它是如此,CKF和观察者更强大地模拟不确定性和网络角质而不是其对应物。基于测试,对卡尔曼滤波器例程和观察者来说也进行了全面的Qualitativomomparison。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号