首页> 外文OA文献 >Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics
【2h】

Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

机译:利用计算流体动力学量化激光雷达的激光雷达和苏打多普勒波束摆动测量误差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wind-profiling lidars are now regularly used in boundary-layer meteorologyand in applications such as wind energy and air quality. Lidar windprofilers exploit the Doppler shift of laser light backscattered fromparticulates carried by the wind to measure a line-of-sight (LOS) velocity.The Doppler beam swinging (DBS) technique, used by many commercial systems,considers measurements of this LOS velocity in multiple radial directions inorder to estimate horizontal and vertical winds. The method relies on theassumption of homogeneous flow across the region sampled by the beams. Usingsuch a system in inhomogeneous flow, such as wind turbine wakes or complexterrain, will result in errors.To quantify the errors expected from such violation of the assumption ofhorizontal homogeneity, we simulate inhomogeneous flow in the atmosphericboundary layer, notably stably stratified flow past a wind turbine, with a meanwind speed of 6.5 m s at the turbine hub-height of 80 m.This slightly stable case results in 15° of wind direction changeacross the turbine rotor disk. The resulting flow field is sampled in thesame fashion that a lidar samples the atmosphere with the DBS approach,including the lidar range weighting function, enabling quantification of theerror in the DBS observations. The observations from the instruments locatedupwind have small errors, which are ameliorated with time averaging.However, the downwind observations, particularly within the first two rotordiameters downwind from the wind turbine, suffer from errors due to theheterogeneity of the wind turbine wake. Errors in the stream-wise componentof the flow approach 30% of the hub-height inflow wind speed close to therotor disk. Errors in the cross-stream and vertical velocity components arealso significant: cross-stream component errors are on the order of 15%of the hub-height inflow wind speed (1.0 m s) and errors in thevertical velocity measurement exceed the actual vertical velocity.By three rotor diameters downwind, DBS-based assessments of wake wind speeddeficits based on the stream-wise velocity can be relied on even within thenear wake within 1.0 m s (or 15% of the hub-height inflow windspeed), and the cross-stream velocity error is reduced to 8% whilevertical velocity estimates are compromised. Measurements of inhomogeneousflow such as wind turbine wakes are susceptible to these errors, andinterpretations of field observations should account for this uncertainty.
机译:如今,风廓线激光雷达经常用于边界层气象学以及风能和空气质量等应用中。激光雷达风廓线仪利用从风携带的微粒向后散射的激光的多普勒频移来测量视线(LOS)速度。许多商业系统使用的多普勒光束摆动(DBS)技术考虑了该LOS速度的测量。多个径向方向以便估计水平和垂直风。该方法依赖于假设在穿过光束采样的区域上均匀流动。在风轮机尾流或复杂地形等非均匀流中使用这种系统会导致错误。为了量化因违反水平均匀性假设而产生的预期误差,我们模拟了大气边界层中的非均匀流,尤其是经过风的稳定分层流涡轮机,在80 m的涡轮轮毂高度处的平均风速为6.5 ms。这种稍微稳定的情况导致整个涡轮转子盘上的风向变化了15°。产生的流场的采样方式与激光雷达使用DBS方法对大气采样的方式相同,包括激光雷达范围加权功能,从而可以量化DBS观测值中的误差。来自上风向仪器的观测结果具有较小的误差,这些误差会随着时间平均而得到改善。但是,由于风电机组尾流的非均质性,下风向的观测结果,特别是在风力涡轮机顺风的前两个转子直径内,会遭受误差。气流沿流方向的误差接近转子盘附近的轮毂高度流入风速的30%。横流和垂直速度分量的误差也很明显:横流分量的误差约为轮毂高度流入风速(1.0 ms)的15%,垂直速度测量的误差超过了实际垂直速度。顺风三个转子直径,甚至可以在1.0毫秒(或轮毂高度流入风速的15%)内的尾流以内,也可以依靠基于流向速度的基于DBS的尾流风速赤字评估以及横流速度垂直速度估算受到影响时,误差降低到8%。诸如风轮机尾流等非均质流的测量容易受到这些误差的影响,对现场观测的解释应解释这种不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号