首页> 外文OA文献 >Novel Robust Exponential Stability of Markovian Jumping Impulsive Delayed Neural Networks of Neutral-Type with Stochastic Perturbation
【2h】

Novel Robust Exponential Stability of Markovian Jumping Impulsive Delayed Neural Networks of Neutral-Type with Stochastic Perturbation

机译:具有随机扰动的马尔可夫跳跃脉冲延迟神经网络的新型鲁棒指数稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The robust exponential stability problem for a class of uncertain impulsive stochastic neural networks of neutral-type with Markovian parameters and mixed time-varying delays is investigated. By constructing a proper exponential-type Lyapunov-Krasovskii functional and employing Jensen integral inequality, free-weight matrix method, some novel delay-dependent stability criteria that ensure the robust exponential stability in mean square of the trivial solution of the considered networks are established in the form of linear matrix inequalities (LMIs). The proposed results do not require the derivatives of discrete and distributed time-varying delays to be 0 or smaller than 1. Moreover, the main contribution of the proposed approach compared with related methods lies in the use of three types of impulses. Finally, two numerical examples are worked out to verify the effectiveness and less conservativeness of our theoretical results over existing literature.
机译:研究了一类不确定的中性类型不确定冲动随机神经网络的强大指数稳定性问题,以及混合时变延迟。通过构建适当的指数型Lyapunov-Krasovskii功能和采用Jensen积分不等式,自由素质矩阵方法,建立了一些新的延迟依赖性稳定性标准,确保了所考虑网络的微平均均方方中的均方方体平方中的强大指数稳定性线性矩阵不等式(LMI)的形式。所提出的结果不要求离散和分布时变延迟的衍生物为0或小于1.此外,所提出的方法与相关方法相比的主要贡献在于使用三种类型的冲动。最后,制定了两个数值例子,以验证我们对现有文献的理论结果的有效性和更少的保守性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号