首页> 外文OA文献 >On the Feedback Capacity of Power-Constrained Gaussian Noise Channels With Memory
【2h】

On the Feedback Capacity of Power-Constrained Gaussian Noise Channels With Memory

机译:关于存储器的功率约束高斯噪声通道的反馈容量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For a stationary additive Gaussian-noise channel with a rational noise powerspectrum of a finite-order $L$, we derive two new results for the feedbackcapacity under an average channel input power constraint. First, we show that avery simple feedback-dependent Gauss-Markov source achieves the feedbackcapacity, and that Kalman-Bucy filtering is optimal for processing thefeedback. Based on these results, we develop a new method for optimizing thechannel inputs for achieving the Cover-Pombra block-length-$n$ feedbackcapacity by using a dynamic programming approach that decomposes thecomputation into $n$ sequentially identical optimization problems where eachstage involves optimizing $O(L^2)$ variables. Second, we derive the explicitmaximal information rate for stationary feedback-dependent sources. In general,evaluating the maximal information rate for stationary sources requires solvingonly a few equations by simple non-linear programming. For first-orderautoregressive and/or moving average (ARMA) noise channels, this optimizationadmits a closed form maximal information rate formula. The maximal informationrate for stationary sources is a lower bound on the feedback capacity, and itequals the feedback capacity if the long-standing conjecture, that stationarysources achieve the feedback capacity, holds.
机译:对于具有有限阶$ L $的有理噪声功率谱的平稳加性高斯噪声信道,我们得出了在平均信道输入功率约束下反馈容量的两个新结果。首先,我们表明,每个简单的依赖于反馈的高斯-马尔可夫源都能实现反馈能力,而卡尔曼-布西滤波是处理反馈的最佳选择。基于这些结果,我们开发了一种用于优化通道输入以实现Cover-Pombra块长-$ n $反馈容量的新方法,方法是使用动态编程方法将计算分解为$ n $顺序相同的优化问题,其中每个阶段都涉及优化$ O(L ^ 2)$变量。其次,我们推导了固定反馈相关源的显式最大信息率。通常,评估固定源的最大信息速率仅需要通过简单的非线性编程来求解几个方程。对于一阶自回归和/或移动平均(ARMA)噪声通道,此优化允许采用封闭形式的最大信息速率公式。固定源的最大信息率是反馈容量的下限,如果固定源实现反馈容量的长期推测成立,则等于反馈容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号