首页> 外文OA文献 >A novel image registration approach via combining local features and geometric invariants
【2h】

A novel image registration approach via combining local features and geometric invariants

机译:一种新颖的图像登记方法,通过组合本地特征和几何不变性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points.
机译:图像注册广泛用于许多领域,但现有方法的适应性受到限制。这项工作提出了一种具有高精度的新型图像配准方法,适用于各种复杂应用。在此框架中,注册问题分为两个阶段。首先,我们使用修改的计算机视觉前进的快速和旋转简短(ORB)算法来检测和描述鳞片不变特征点,提出了一种提高特征点匹配性能的简单方法。其次,我们开发了根据特征距离的粗略选择的新局部约束。证据表明,基于图像特征的现有匹配技术对于具有稀疏图像细节的图像不足。然后,我们通过几何约束提出了一种新颖的匹配算法,并基于所选择的特征点的几何修正地建立本地特征描述。随后,构建新的价格函数以评估点之间的相似性并获得精确匹配对。最后,我们采用了逐行示例共识方法来删除错误的匹配并计算空间变换参数。各种复杂图像数据集的实验结果验证了所提出的方法更加稳健,并且显着降低了假匹配的速率,同时保留了更高质量的特征点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号