首页> 外文OA文献 >Multi-Modal Medical Image Registration with Full or Partial Data: A Manifold Learning Approach
【2h】

Multi-Modal Medical Image Registration with Full or Partial Data: A Manifold Learning Approach

机译:具有全部或部分数据的多模态医学图像配准:流形学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-modal image registration is the primary step in integrating information stored in two or more images, which are captured using multiple imaging modalities. In addition to intensity variations and structural differences between images, they may have partial or full overlap, which adds an extra hurdle to the success of registration process. In this contribution, we propose a multi-modal to mono-modal transformation method that facilitates direct application of well-founded mono-modal registration methods in order to obtain accurate alignment of multi-modal images in both cases, with complete (full) and incomplete (partial) overlap. The proposed transformation facilitates recovering strong scales, rotations, and translations. We explain the method thoroughly and discuss the choice of parameters. For evaluation purposes, the effectiveness of the proposed method is examined and compared with widely used information theory-based techniques using simulated and clinical human brain images with full data. Using RIRE dataset, mean absolute error of 1.37, 1.00, and 1.41 mm are obtained for registering CT images with PD-, T1-, and T2-MRIs, respectively. In the end, we empirically investigate the efficacy of the proposed transformation in registering multi-modal partially overlapped images.
机译:多模态图像配准是集成存储在两个或多个图像中的信息的主要步骤,其使用多个成像模次捕获。除了在图像之间的强度变化和结构差异之外,它们可能具有部分或完全重叠,这增加了注册过程的成功额外的障碍。在这一贡献中,我们向单模模态转换方法提出了一种多模态,便于直接应用良好创立的单模态登记方法,以便在两种情况下获得多模态图像的准确对准,完整(满)和不完整(部分)重叠。所提出的转化有助于恢复强大的尺度,旋转和翻译。我们彻底解释了该方法并讨论了参数的选择。为了评估目的,研究了所提出的方法的有效性,并与广泛使用的基于信息理论的技术进行比较,使用具有完整数据的模拟和临床人脑图像。使用RIRE DataSet分别获得1.37,1.00和1.41 mm的平均值误差,分别获得具有PD-,T1-和T2-MRI的CT图像。最后,我们经验探讨所提出的转化在注册多模态部分重叠图像中的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号