首页> 外文OA文献 >Super-Resolved Multiple Scatterers Detection in SAR Tomography Based on Compressive Sensing Generalized Likelihood Ratio Test (CS-GLRT)
【2h】

Super-Resolved Multiple Scatterers Detection in SAR Tomography Based on Compressive Sensing Generalized Likelihood Ratio Test (CS-GLRT)

机译:基于压缩检测广义似然比测试的SAR断层扫描中的超分辨多散射器检测(CS-GLRT)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The application of SAR tomography (TomoSAR) on the urban infrastructure and other man-made buildings has gained increasing popularity with the development of modern high-resolution spaceborne satellites. Urban tomography focuses on the separation of the overlaid targets within one azimuth-range resolution cell, and on the reconstruction of their reflectivity profiles. In this work, we build on the existing methods of compressive sensing (CS) and generalized likelihood ratio test (GLRT), and develop a multiple scatterers detection method named CS-GLRT to automatically recognize the number of scatterers superimposed within a single pixel as well as to reconstruct the backscattered reflectivity profiles of the detected scatterers. The proposed CS-GLRT adopts a two-step strategy. In the first step, an L1-norm minimization is carried out to give a robust estimation of the candidate positions pixel by pixel with super-resolution. In the second step, a multiple hypothesis test is implemented in the GLRT to achieve model order selection, where the mapping matrix is constrained within the afore-selected columns, namely, within the candidate positions, and the parameters are estimated by least square (LS) method. Numerical experiments on simulated data were carried out, and the presented results show its capability of separating the closely located scatterers with a quasi-constant false alarm rate (QCFAR), as well as of obtaining an estimation accuracy approaching the Cramer−Rao Low Bound (CRLB). Experiments on real data of Spotlight TerraSAR-X show that CS-GLRT allows detecting single scatterers with high density, distinguishing a considerable number of double scatterers, and even detecting triple scatterers. The estimated results agree well with the ground truth and help interpret the true structure of the complex or buildings studied in the SAR images. It should be noted that this method is especially suitable for urban areas with very dense infrastructure and man-made buildings, and for datasets with tightly-controlled baseline distribution.
机译:SAR断层扫描(Tomosar)在城市基础设施和其他人造建筑物中的应用,随着现代高分辨率的航天卫星的发展,越来越受欢迎。城市断层扫描专注于覆盖目标在一个方位角分辨率下的覆盖目标,以及重建它们的反射率轮廓。在这项工作中,我们构建了现有的压缩感测(CS)和广义似然比测试(GLRT)的方法,并开发一个名为CS-GLRT的多个散射器检测方法,以自动识别叠加在单个像素内的散射体的数量为了重建检测到的散射体的反向散射反射率轮廓。建议的CS-GLRT采用两步战略。在第一步中,执行L1-NOM最小化以通过具有超分辨率的像素给出候选位置像素的稳健估计。在第二步骤中,一个多重假设检验在GLRT实现以达到模型阶选择,其中映射矩阵的前述选择的列中的约束,即,候选位置内,并且参数估计由最小二乘(LS ) 方法。进行了模拟数据的数值实验,并且所提出的结果表明其具有与准常数误报率(QCFAR)分离的能力,以及获得接近Cramer-Rao低界限的估计精度( CRLB)。 Spotlight Terrasar-X实际数据的实验表明CS-GLRT允许检测具有高密度的单个散射仪,区分相当多的双散射仪,甚至检测三重散射仪。估计结果与地面真理同意,并帮助解释在SAR图像中研究的复杂或建筑物的真实结构。应该注意的是,这种方法特别适用于具有非常密集的基础设施和人造建筑物的城市地区,以及具有紧密控制的基线分布的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号