首页> 外文OA文献 >Novel dictionary learning algorithm for accelerating multi-dimensional MRI applications
【2h】

Novel dictionary learning algorithm for accelerating multi-dimensional MRI applications

机译:用于加速多维MRI应用的新型字典学习算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The clinical utility of multi-dimensional MRI applications like multi-parameter mapping and 3D dynamic lung imaging is limited by long acquisition times. Quantification of multiple tissue MRI parameters has been shown to be useful for early detection and diagnosis of various neurological diseases and psychiatric disorders. They also provide useful information about disease progression and treatment efficacy. Dynamic lung imaging enables the diagnosis of abnormalities in respiratory mechanics in dyspnea and regional lung function in pulmonary diseases like chronic obstructive pulmonary disease (COPD), asthma etc. However, the need for acquisition of multiple contrast weighted images as in case of multi-parameter mapping or multiple time points as in case of pulmonary imaging, makes it less applicable in the clinical setting as it increases the scan time considerably. In order to achieve reasonable scan times, there is often tradeoffs between SNR and resolution.Since, most MRI images are sparse in known transform domain; they can be recovered from fewer samples. Several compressed sensing schemes have been proposed which exploit the sparsity of the signal in pre-determined transform domains (eg. Fourier transform) or exploit the low rank characteristic of the data. However, these methods perform sub-optimally in the presence of inter-frame motion since the pre-determined dictionary does not account for the motion and the rank of the data is considerably higher. These methods rely on two step approach where they first estimate the dictionary from the low resolution data and using these basis functions they estimate the coefficients by fitting the measured data to the signal model.The main focus of the thesis is accelerating the multi-parameter mapping and 3D dynamic lung imaging applications to achieve desired volume coverage and spatio-temporal resolution. We propose a novel dictionary learning framework called the Blind compressed sensing (BCS) scheme to recover the underlying data from undersampled measurements, in which the underlying signal is represented as a sparse linear combination of basic functions from a learned dictionary. We also provide an efficient implementation using variable splitting technique to reduce the computational complexity by up to 15 fold. In both multi- parameter mapping and 3D dynamic lung imaging, the comparisons of BCS scheme with other schemes indicates superior performance as it provides a richer presentation of the data. The reconstructions from BCS scheme result in high accuracy parameter maps for parameter imaging and diagnostically relevant image series to characterize respiratory mechanics in pulmonary imaging.
机译:多尺寸MRI应用如多参数映射和3D动态肺成像等多维MRI应用的临床用途受长时间采集时间的限制。已经显示多组织MRI参数的定量可用于早期检测和诊断各种神经疾病和精神病疾病。他们还提供有关疾病进展和治疗效能的有用信息。动态肺成像可以诊断呼吸困难呼吸道机制异常和慢性阻塞性肺疾病(COPD),哮喘等的肺部疾病中的肺部机械异常诊断。然而,需要在多参数的情况下获取多个对比度加权图像在肺部成像的情况下,映射或多个时间点,使得在临床环境中不太适用,因为它显着增加了扫描时间。为了实现合理的扫描时间,SNR和分辨率之间经常之间的权衡.Since,大多数MRI图像在已知的变换域中稀疏;它们可以从更少的样品中恢复。已经提出了几种压缩传感方案,其利用预定的变换域中的信号的稀疏性(例如,傅立叶变换)或利用数据的低等级特征。然而,这些方法在存在帧间运动的存在中,由于预先确定的字典不考虑运动并且数据的等级相当高。这些方法依赖于两个步骤方法,其中首先将字典从低分辨率数据估计,并使用这些基本函数来通过将测量的数据拟合到信号模型来估计系数。论文的主要焦点正在加速多参数映射和3D动态肺成像应用,以实现所需的量覆盖和时空分辨率。我们提出了一种名为盲压缩感测(BCS)方案的新型字典学习框架,以从未采样的测量恢复底层数据,其中底层信号被表示为来自学习词典的基本功能的稀疏线性组合。我们还提供了一种使用可变拆分技术的有效实现,以将计算复杂度降低到15倍。在多参数映射和3D动态肺成像中,BCS方案与其他方案的比较表示卓越的性能,因为它提供了更丰富的数据呈现。来自BCS方案的重建导致参数成像和诊断相关图像系列的高精度参数映射,以表征肺部成像中的呼吸力学。

著录项

  • 作者

    Sampada Vasant Bhave;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号