首页> 外文OA文献 >CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System
【2h】

CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System

机译:用于预测泥浆处理系统中旋风分离器收集效率的空气粒子流动的CFD模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Drilling mud was used once in the step of separating the gas and powder they were transported to a surge tank. At that time, the fine powder, such as dust that is not separated from the gas, is included in the gas that was separated from the mud. The fine particles of the powder are collected to increase the density of the powder and prevent air pollution. To remove particles from air or another gas, a cyclone-type separator generally can be used with the principles of vortex separation without using a filter system. In this study, we conducted numerical simulations of air-particle flow consisting of two components in a cyclone separator in a mud handling system to investigate the characteristics of turbulent vortical flow and to evaluate the collection efficiency using the commercial software, STAR-CCM+. First, the single-phase air flow was simulated and validated through the comparison with experiments (Boysan et al., 1983) and other CFD simulation results (Slack et al., 2000). Then, based on one-way coupling simulation for air and powder particles, the multi-phase flow was simulated, and the collection efficiency for various sizes of particles was compared with the experimental and theoretical results.
机译:钻井泥浆在分离它们被运送到一个缓冲罐的气体和粉末的步骤中使用一次。此时,细粉末,如粉尘没有从气体中分离,包括一个从泥浆分离的气体英寸粉末的细颗粒被收集以增加粉末的密度和防止空气污染。以除去从空气或其它气体,旋风式分离器通常可与涡流分离的原理,而无需使用一个过滤器系统中使用的颗粒。在这项研究中,我们进行了包括在泥浆处理系统的旋风分离器两种成分的空气粒子流的数值模拟研究湍流旋涡流,并使用商业软件来评估收集效率,STAR-CCM +的特性。首先,将单相的空气流进行模拟,并通过与实验进行比较验证(Boysan等人,1983)和其他CFD模拟结果(Slack等人,2000)。然后,基于单向耦合模拟空气和粉末颗粒,所述多相流进行模拟,以及用于颗粒的各种尺寸的收集效率与实验和理论结果进行比较。

著录项

  • 作者

    Gyu-Mok Jeon; Jong-Chun Park;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号