首页> 外文OA文献 >Deriving the priority weights from probabilistic linguistic preference relation with unknown probabilities
【2h】

Deriving the priority weights from probabilistic linguistic preference relation with unknown probabilities

机译:与未知概率导出从概率语言偏好关系的优先级权重

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Generally, the probabilistic linguistic term set (PLTS) provides more accurate descriptive properties than the hesitant fuzzy linguistic term set does. The probabilistic linguistic preference relation (PLPR), which is applied to deal with complex decision-making problems, can be constructed for PLTSs. However, it is difficult for decision makers to provide the probabilities of occurrence for PLPR. To deal with this problem, we propose a definition of expected consistency for PLPR and establish a probability computing model to derive probabilities of occurrence in PLPR with priority weights for alternatives. A consistency-improving iterative algorithm is presented to examine whether or not the PLPR is at an acceptable consistency. Moreover, the consistency-improving iterative algorithm should obtain the satisfaction consistency level for the unacceptable consistency PLPR. Finally, a real-world employment-city selection is used to demonstrate the effectiveness of the proposed method of deriving priority weights from PLPR.
机译:通常,概率语言术语集合(PLTS)提供比犹豫不决的模糊语言术语集更精确的描述性。可以为PLTS构建应用于处理复杂决策问题的概率语言偏好关系(PLPR)。然而,决策者难以提供PLPR的发生概率。为了解决这个问题,我们提出了预期的PLPR一致性的定义,并建立了概率计算模型,以推导PLPR的概率,以获得替代方案的优先权。提出了一种一致性改进的迭代算法以检查PLPR是否处于可接受的一致性。此外,一致性改善的迭代算法应该获得不可接受的一致性PLPR的满意度一致性水平。最后,使用真实的就业城市选择来展示从PLPR获得优先权的提议方法的有效性。

著录项

  • 作者

    Yongming Song;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号