首页> 外文OA文献 >Robust estimation of 3-D motion parameters in presence of correspondence mismatches
【2h】

Robust estimation of 3-D motion parameters in presence of correspondence mismatches

机译:存在对应不匹配时对3D运动参数的鲁棒估计

摘要

It is noted that the accuracy of a motion analysis scheme based on feature point correspondence is quite poor when there are mismatches between points. A small amount of mismatch (i.e., outlier data) may degrade the performance of the least-squares estimator significantly. It is shown that the least median of squares (LMedS) estimator can provide the required robustness. This method works well even when almost half of the given data are outliers. A Monte Carlo sampling technique is used to reduce the computational load. Subsequent use of the total least-squares or the constrained least-squares method on the trimmed data set enhances efficiency. Simulation experiments are carried out to evaluate the performance of the proposed method. By virtue of having a very high breakdown point, the LMedS estimator provides the much desired robustness against the correspondence mismatches.
机译:注意,当在点之间不匹配时,基于特征点对应的运动分析方案的准确性非常差。少量的失配(即异常数据)可能会严重降低最小二乘估计器的性能。结果表明,最小二乘平方中位数(LMedS)估计量可以提供所需的鲁棒性。即使几乎有一半的给定数据是异常值,此方法也能很好地工作。蒙特卡洛采样技术用于减少计算量。随后在修剪后的数据集上使用总最小二乘法或约束最小二乘法可提高效率。仿真实验进行了评估该方法的性能。由于具有很高的击穿点,LMedS估计器可提供非常理想的鲁棒性来应对对应不匹配的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号