首页> 外文OA文献 >Modeling multimodal cues in a deep learning-based framework for emotion recognition in the wild
【2h】

Modeling multimodal cues in a deep learning-based framework for emotion recognition in the wild

机译:基于深入学习的情感识别框架中的模拟多峰案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a multimodal deep learning architecture for emotion recognition in video regarding our participation to the audio-video based sub-challenge of the Emotion Recognition in the Wild 2017 challenge. Our model combines cues from multiple video modalities, including static facial features, motion patterns related to the evolution of the human expression over time, and audio information. Specifically, it is composed of three sub-networks trained separately: the first and second ones extract static visual features and dynamic patterns through 2D and 3D Convolutional Neural Networks (CNN), while the third one consists in a pretrained audio network which is used to extract useful deep acoustic signals from video. In the audio branch, we also apply Long Short Term Memory (LSTM) networks in order to capture the temporal evolution of the audio features. To identify and exploit possible relationships among different modalities, we propose a fusion network that merges cues from the different modalities in one representation. The proposed architecture outperforms the challenge baselines (38.81% and 40.47%): we achieve an accuracy of 50.39% and 49.92% respectively on the validation and the testing data.
机译:在本文中,我们提出了一种多模式深度学习架构,用于视频中的情感认可,了解我们参与野外2017挑战中的情感认知的音频视频基于群体的情感认可。我们的模型将线索与多个视频模型组合,包括静态面部特征,与人类表达的演变相关的运动模式,以及音频信息。具体地,它由单独培训的三个子网络组成:第一和第二卷取通过2D和3D卷积神经网络(CNN)提取静态视觉特征和动态模式,而第三则在普定的音频网络中组成从视频中提取有用的深声信号。在音频分支中,我们还应用了长短的短期内存(LSTM)网络,以捕获音频功能的时间演变。要识别和利用不同模式之间可能的关系,我们提出了一个融合网络,该网络可以在一个表示中与不同方式合并提示。拟议的体系结构优于挑战基线(38.81%和40.47%):我们分别达到验证和测试数据的准确度为50.39%和49.92%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号