首页> 外文OA文献 >Performance Improvement of Artificial Neural Network Model in Short-term Forecasting of Wind Farm Power Output
【2h】

Performance Improvement of Artificial Neural Network Model in Short-term Forecasting of Wind Farm Power Output

机译:风电场输出短期预测中人工神经网络模型的性能改进

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to the low dispatchability of wind power, the massive integration of this energy source in power systems requires short-term and very short-term wind power output forecasting models to be as efficient and stable as possible. A study is conducted in the present paper of potential improvements to the performance of artificial neural network (ANN) models in terms of efficiency and stability. Generally, current ANN models have been developed by considering exclusively the meteorological information of the wind farm reference station, in addition to selecting a fixed number of time periods prior to the forecasting. In this respect, new ANN models are proposed in this paper, which are developed by: varying the number of prior 1-h periods (periods prior to the forecasting hour) chosen for the input layer parameters; and/or incorporating in the input layer data from a second weather station in addition to the wind farm reference station. It has been found that the model performance is always improved when data from a second weather station are incorporated. The mean absolute relative error (MARE) of the new models is reduced by up to 7.5%. Furthermore, the longer the forecasting horizon, the greater the degree of improvement.
机译:由于风电的低调性,电力系统中该能源的大规模集成需要短期和非常短期的风力输出预测模型,尽可能高效且稳定。在本文中对人工神经网络(ANN)模型在效率和稳定方面进行的潜在改进进行了研究。通常,除了在预测之前选择固定数量的时间段之外,还通过专门考虑了电流农场参考站的气象信息来开发了当前的ANN模型。在这方面,在本文中提出了新的ANN模型,其开发为:改变为输入层参数选择的先前1-H周期(预测小时前的时段);除了风电场参考站之外,还包括来自第二气象站的输入层数据中。已经发现,当结合第二个气象站的数据时,模型性能始终得到改善。新模型的平均绝对相对误差(MARE)降低了高达7.5%。此外,预测地平线越长,改善程度越大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号