首页> 外文OA文献 >Parameter Optimization of the 3PG Model Based on Sensitivity Analysis and a Bayesian Method
【2h】

Parameter Optimization of the 3PG Model Based on Sensitivity Analysis and a Bayesian Method

机译:基于灵敏度分析的3PG模型参数优化及贝叶斯方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sensitivity analysis and parameter optimization of stand models can improve their efficiency and accuracy, and increase their applicability. In this study, the sensitivity analysis, screening, and optimization of 63 model parameters of the Physiological Principles in Predicting Growth (3PG) model were performed by combining a sensitivity analysis method and the Markov chain Monte Carlo (MCMC) method of Bayesian posterior estimation theory. Additionally, a nine-year observational dataset of Chinese fir trees felled in the Shunchang Forest Farm, Nanping, was used to analyze, screen, and optimize the 63 model parameters of the 3PG model. The results showed the following: (1) The parameters that are most sensitive to stand stocking and diameter at breast height (DBH) are nWs(power in stem mass vs. diameter relationship), aWs(constant in stem mass vs. diameter relationship), alphaCx(maximum canopy quantum efficiency), k(extinction coefficient for PAR absorption by canopy), pRx(maximum fraction of NPP to roots), pRn(minimum fraction of NPP to roots), and CoeffCond(defines stomatal response to VPD); (2) MCMC can be used to optimize the parameters of the 3PG model, in which the posterior probability distributions of nWs, aWs, alphaCx, pRx, pRn, and CoeffCond conform to approximately normal or skewed distributions, and the peak value is prominent; and (3) compared with the accuracy before sensitivity analysis and a Bayesian method, the biomass simulation accuracy of the stand model was increased by 13.92%, and all indicators show that the accuracy of the improved model is superior. This method can be used to calibrate the parameters and analyze the uncertainty of multi-parameter complex stand growth models, which are important for the improvement of parameter estimation and simulation accuracy.
机译:立式模型的敏感性分析和参数优化可以提高其效率和准确性,并提高其适用性。在该研究中,通过组合敏感性分析方法和Markov链蒙特卡罗(MCMC)方法对贝叶斯后估计理论的敏感性分析方法和Markov链蒙特卡罗(MCMC)方法进行了63型模型参数的敏感性分析,筛选和优化。 。此外,在南平的Shunch森林农场中击倒了中国杉树的九年观察数据集,用于分析,屏幕,优化3PG模型的63型参数。结果表明以下:(1)对乳房高度(DBH)的站立和直径最敏感的参数是NWS(茎质量与直径关系的功率),AWS(茎质量与直径关系中的恒定关系) ,Alphacx(最大冠层量子效率),k(冠层帕癌的消光系数),PRX(NPP的最大分数为ROOTS),PRN(NPP的最小分数为ROOTS),以及副金属晶(为VPD定义气孔反应); (2)MCMC可用于优化3PG模型的参数,其中NWS,AWS,ALPACX,PRX,PRN和Coffcond的后验概率分布符合大致正常或偏斜的分布,峰值突出; (3)与敏感性分析和贝叶斯方法之前的准确性相比,立式模型的生物质模拟精度增加了13.92%,所有指标都表明改进模型的准确性优越。该方法可用于校准参数并分析多参数复合立场增长模型的不确定性,这对于提高参数估计和仿真精度是重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号