首页> 外文OA文献 >Sampling-Based Motion Planning for Free-Floating Space Robot without Inverse Kinematics
【2h】

Sampling-Based Motion Planning for Free-Floating Space Robot without Inverse Kinematics

机译:无逆运动学的自由浮动空间机器人的采样运动规划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motion planning is one of the most important technologies for free-floating space robots (FFSRs) to increase operation safety and autonomy in orbit. As a nonholonomic system, a first-order differential relationship exists between the joint angle and the base attitude of the space robot, which makes it pretty challenging to implement the relevant motion planning. Meanwhile, the existing planning framework must solve inverse kinematics for goal configuration and has the limitation that the goal configuration and the initial configuration may not be in the same connected domain. Thus, faced with these questions, this paper investigates a novel motion planning algorithm based on rapidly-exploring random trees (RRTs) for an FFSR from an initial configuration to a goal end-effector (EE) pose. In a motion planning algorithm designed to deal with differential constraints and restrict base attitude disturbance, two control-based local planners are proposed, respectively, for random configuration guiding growth and goal EE pose-guiding growth of the tree. The former can ensure the effective exploration of the configuration space, and the latter can reduce the possibility of occurrence of singularity while ensuring the fast convergence of the algorithm and no violation of the attitude constraints. Compared with the existing works, it does not require the inverse kinematics to be solved while the planning task is completed and the attitude constraint is preserved. The simulation results verify the effectiveness of the algorithm.
机译:运动规划是自由浮动的空间机器人(FFSRs),以增加操作的安全性和自主权在轨道上最重要的技术之一。作为非完整的系统,所述关节角度和空间机器人,这使得它非常具有挑战性的执行有关运动规划的基座姿态之间存在第一阶微分的关系。同时,现有的规划框架必须解决目标配置逆运动学并具有限制该目标的配置和初始配置可能不是在同一连接的域。因此,面对这些问题,本文探讨基于快速-探索的FFSR随机树(RRTS)从初始配置到目标端部执行器(EE)姿态的新颖运动规划算法。在专门用来对付微分约束和限制基座姿态扰动运动规划算法,两种基于控制地方规划者提出,分别随机配置指导树的生长和目标EE姿势导向的增长。前者可以确保配置空间的有效的探索,而后者可以降低奇异的发生的可能性,同时保证了算法的收敛速度快,无违反态度的制约。与现有的作品相比,它并不需要而规划任务完成和姿态约束被保留所要解决的反向运动。仿真结果验证了算法的有效性。

著录项

  • 作者

    Hongwen Zhang; Zhanxia Zhu;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号