首页> 外文OA文献 >Inference in VARs with conditional heteroskedasticity of unknown form
【2h】

Inference in VARs with conditional heteroskedasticity of unknown form

机译:var的推理,具有未知形式的条件异质性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We derive a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. We prove a joint central limit theorem for the VAR slope parameter and innovation covariance parameter estimators and address bootstrap inference as well. Our results are important for correct inference on VAR statistics that depend both on the VAR slope and the variance parameters as e.g. in structural impulse response functions (IRFs). We also show that wild and pairwise bootstrap schemes fail in the presence of conditional heteroskedasticity if inference on (functions) of the unconditional variance parameters is of interest because they do not correctly replicate the relevant fourth moments' structure of the error terms. In contrast, the residual-based moving block bootstrap results in asymptotically valid inference. We illustrate the practical implications of our theoretical results by providing simulation evidence on the finite sample properties of different inference methods for IRFs. Our results point out that estimation uncertainty may increase dramatically in the presence of conditional heteroskedasticity. Moreover, most inference methods are likely to understate the true estimation uncertainty substantially in finite samples.
机译:我们推导了具有未知形式的条件异方差性的稳定向量自回归(VAR)模型中渐近有效推断的框架。我们证明了VAR斜率参数和创新协方差参数估计量以及地址自举推断的联合中心极限定理。我们的结果对于正确推断VAR统计数据非常重要,VAR统计数据既取决于VAR斜率又取决于方差参数,例如在结构冲激响应函数(IRF)中。我们还表明,如果对无条件方差参数的(函数)进行推断是有意义的,那么在存在条件异方差的情况下,野生和成对自举方案将失败,因为它们不能正确地复制误差项的相关第四矩的结构。相反,基于残差的移动块自举会导致渐近有效的推断。通过为IRF的不同推断方法的有限样本属性提供仿真证据,我们说明了理论结果的实际含义。我们的结果指出,在存在条件异方差的情况下,估计不确定性可能会急剧增加。此外,大多数推断方法可能会在有限样本中低估真实估计不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号