首页> 外文OA文献 >Marketing strategies evaluation based on big data analysis: a CLUSTERING-MCDM approach
【2h】

Marketing strategies evaluation based on big data analysis: a CLUSTERING-MCDM approach

机译:基于大数据分析的营销策略评估:聚类 - MCDM方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, a huge amount of data is generated due to rapid Information and Communication Technology development. In this paper, a digital banking strategy has been suggested applying these big data for Iranian banking industry. This strategy would guide Iranian banks to analyse and distinguish customers’ needs to offer services proportionate to their manner. In this research, the balances of more than 2,600,000 accounts over 400 weeks are computed in a bank. These accounts are clustered based on justified RFM parameters containing maximum balances, the most number of maximum balances and the last week number with the maximum balance using k-means method. Subsequently, the clusters are prioritised employing Best Worst Method- COmplex PRoportional ASsessment methods considering the diverse inner value of each cluster. The accounts are classified into six clusters. The experts named the clusters as special, loyal, silver- high interaction, silver- low interaction, bronze, averted- low interaction. silver- low interaction cluster and loyal cluster are picked in order by experts and BWM-COPRAS as the most influential clusters and the digital banking strategy is developed for them. RFM parameters are modelled for customers’ accounts singly. The aggregation of the separate accounts of a customer should be considered.
机译:如今,由于快速信息和通信技术开发,产生了大量数据。在本文中,已经提出了一种数字银行策略,适用于伊朗银行业的这些大数据。该策略将指导伊朗银行分析和区分客户的需求,以向其方式提供比例。在这项研究中,银行计算超过400周超过400,000份账户的平衡。这些帐户基于包含最大余额的公正的RFM参数,最大数量的最大余额和使用k-means方法的最大余额的最大余额数。随后,考虑每个群集的不同内部值,群集优先采用最佳最差的方法 - 复杂的比例评估方法。该帐户分为六个集群。专家名称为特殊,忠诚,银互动,银 - 低互动,青铜,易受互动的专家。 Silver-Low Interaction集群和忠诚集群按照专家和BWM-Copras作为最具影响力的集群,为他们开发了数字银行策略。 RFM参数单独为客户的账户进行建模。应考虑客户的单独账户的聚合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号