首页> 外文OA文献 >Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus for Maneuvering Target Tracking
【2h】

Adaptive Interacting Multiple Model Algorithm Based on Information-Weighted Consensus for Maneuvering Target Tracking

机译:基于信息加权共识的自适应交互多模型算法,用于机动目标跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Networked multiple sensors are used to solve the problem of maneuvering target tracking. To avoid the linearization of nonlinear dynamic functions, and to obtain more accurate estimates for maneuvering targets, a novel adaptive information-weighted consensus filter for maneuvering target tracking is proposed. The pseudo measurement matrix is computed with unscented transform to utilize the information form of measurements, which is necessary for consensus iterations. To improve the maneuvering target tracking accuracy and get a unified estimation in each sensor node across the entire network, the adaptive current statistical model is exploited to update the estimate, and the information-weighted consensus protocol is applied among neighboring nodes for each dynamic model. Based on posterior probabilities of multiple models, the final estimate of each sensor is acquired with weighted combination of model-conditioned estimates. Experimental results illustrate the superior performance of the proposed algorithm with respect tracking accuracy and agreement of estimates in the whole network.
机译:网络化多个传感器用于解决机动目标跟踪问题。为了避免非线性动态功能的线性化,并获得更准确的操纵目标估计,提出了一种用于操纵目标跟踪的新型自适应信息加权共识滤波器。使用Unscented Transform来计算伪测量矩阵以利用测量的信息形式,这对于共识迭代是必要的。为了改善整个网络的每个传感器节点中的机动目标跟踪精度并获得统一估计,利用自适应电流统计模型来更新估计,并且在每个动态模型中相邻节点应用信息加权共识协议。基于多种模型的后验概率,通过模型条件估计的加权组合获取每个传感器的最终估计。实验结果说明了所提出的算法的卓越性能,尊重跟踪准确性和整个网络估计的协议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号