首页> 外文OA文献 >Alarms‐related wind turbine fault detection based on kernel support vector machines
【2h】

Alarms‐related wind turbine fault detection based on kernel support vector machines

机译:基于内核支持向量机的警报相关的风力涡轮机故障检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wind power is playing an increasingly significant role in daily life. However, wind farms are usually far away from cities especially for offshore wind farms, which brought inconvenience for maintenance. Two conventional maintenance strategies, namely corrective maintenance and preventive maintenance, cannot provide condition-based maintenance to identify potential anomalies and predicts turbines' future operation trend. In this study, a model based data-driven condition monitoring method is proposed for fault detection of the wind turbines (WTs) with SCADA data acquired from an operational wind farm. Due to the nature of the alarm signals, the alarm data can be used as an intermedium to link the normal data and fault data. First, KPCA is employed to select principal components (PCs) to retain the dominant information from the original dataset to reduce the computation load for further modelling. Then the selected PCs are processed for normal-abnormal condition classification to extract those abnormal condition data that are classified further into false alarms and true alarms related to the faults. This two-stage classification approach is implemented based on the KSVM algorithm. The results demonstrate that the two-stage fault detection method can identify the normal, alarm and fault conditions of the WTs accurately and effectively.
机译:风力发电是打在日常生活中日益显著的作用。然而,风电场一般都远离城市特别是海上风电场,这带来了不便维修。两个传统的维护策略,即改正性维护和预防性维护,不能提供基于状态的维护,以识别潜在的异常情况,并预测涡轮机的未来操作趋势。在这项研究中,基于模型的数据驱动状态监测方法,提出了用于故障检测的风力涡轮机(WTS)与从操作风电场获取的SCADA数据。由于该报警信号的性质,报警数据可以用作媒介物连结的正常数据和故障数据。首先,KPCA被用来选择主成分(PC)的保留从原始数据集的主要信息,以减少计算负荷为进一步的建模。然后所选择的个人电脑的处理有正常异常状态分类,以提取被进一步分类为假警报和相关的故障真报警那些异常状况的数据。这两个阶段的分类方法是根据KSVM算法来实现。结果表明,两阶段检测故障的方法可以准确和有效识别的WT的正常,警报和故障状态。

著录项

  • 作者

    Yueqi Wu; Xiandong Ma;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号