首页> 外文OA文献 >Gas flow through static particle arrangements with a channel: Resolved simulations and analytic considerations
【2h】

Gas flow through static particle arrangements with a channel: Resolved simulations and analytic considerations

机译:气体流过静态粒子布置,通道:解决模拟和分析考虑因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fractures of particle assemblies happen frequently in dense gas-solid systems leading to a notable heterogeneity in the particle configuration, especially in case of cohesive powders and non-spherical particle interlocking. In this work, we investigate the influence of such heterogeneities on the hydrodynamic drag by studying the idealized case of a random arrangement of spheres with a channel-like void region. More specifically, we introduce this heterogeneity to a homogeneous particle arrangement by shifting apart two bulk regions, such that a void channel divides particle bulk. Single-relaxation-time lattice Boltzmann simulations were performed to resolve fluid flow through such arrested particle configurations and calculate the corresponding gas-particle momentum exchange and pressure drop. The calculated drag forces acting on the solids for random sphere arrangement are in good agreement with previously reported results of Hill et al. (2001b), Tenneti et al. (2011), and Tang et al. (2015). However, the overall momentum exchange obtained for configurations containing a heterogeneity is significantly lower. Obviously, the channel allows for a by-passing of a considerable amount of the flow leading to a reduced overall pressure drop and thereby underestimating the minimum fluidization velocity in a fluidized bed. Based on these direct numerical simulations, we examine the overall pressure drop dependence on the characteristic length scale (i.e. width) of the channel-like heterogeneity Lc, the superficial Reynolds number (30 ⩽ Re ⩽ 300), and the solid volume fraction in the dense (i.e. bulk) region (0.4 ⩽ϕp⩽ 0.55). The width of the channel is varied within the order of magnitude of particle diameter Dp (1 ⩽Lc/Dp⩽4.36), decreasing an overall solid volume fraction (0.25 ⩽ϕ⩽ 0.55). In addition to the numerical simulations, we derive (semi)-analytic correlations for the dense bulk region as well as for the channel. As the simulations range from laminar to transitional flow, providing a single pressure drop correlation is very challenging. Therefore, we estimate the channel pressure drop with the appropriate correlations selected according to calculated superficial Reynolds number. For laminar flow, we achieved a good agreement between a combined (i.e. bulk and channel) analytical prediction of overall pressure drop and our resolved numerical simulation. In the transitional regime, the pressure drop values are more difficult to predict, with the better agreement as we approach the turbulent regime. We believe that this work can act as a basis for the development of future drag laws accounting for channel-like sub-grid heterogeneities. Keywords: Gas-particle flow, Heterogeneous particle arrangement, Channel in particle bed, Lattice Boltzmann simulation, Analytic correlations, Pressure drop
机译:的粒子组件骨折致密气 - 固体系,导致在颗粒结构的显着异质性经常发生,尤其是在粘性粉末和非球形颗粒互锁的情况下。在这项工作中,我们探讨的流体动力阻力这种非均质性与通道状空白区域研究领域的一个随机排列的理想情况的影响。更具体地说,我们通过移动开的两个块区,使得空隙信道划分粒子体积介绍这种异质性,以均匀的粒子排列。进行单弛豫时间格子Boltzmann模拟通过这样的被捕粒子配置,以解决流体流动,并计算相应的气体 - 粒子动量交换和压降。作用在固体随机球排列计算的阻力是在与希尔等人先前报道的结果基本一致。 (2001年),Tenneti等。 (2011年),唐等人。 (2015)。然而,对于含有异质结构获得的整体动量交换是显著更低。显然,信道允许绕过相当数量导致降低总压降的流动,并由此低估在流化床最小流化速度。基于这些直接数值模拟,我们检查通道状的异质性LC,表观雷诺数(30⩽重新⩽300),并且在所述固体体积分数对所述特征长度尺度的总压降的依赖性(即宽度)密(即本体)的区域(0.4⩽φp⩽0.55)。该通道的宽度是粒子直径Dp(1⩽Lc/Dp⩽4.36)的数量级内变化,从而降低整体的固体体积分数(0.25⩽φ⩽0.55)。除了数值模拟,我们推导出致密体区域,以及用于信道(半)-analytic相关性。作为模拟的范围从层到过渡流,提供了一个单一的压降相关性非常具有挑战性。因此,我们估计与根据计算出的浅雷诺数选择了适当的相关性的信道的压降。对于层流,我们实现了一个组合(即本体和信道)的总压降的分析预测,我们的解决数值模拟之间的良好的一致性。在过渡政权,压降值更难以预测,具有更好的协议,随着我们接近紊流状态。我们相信,这项工作可以为将来的阻力法律占通道式的分格非均质性发展的基础作用。关键词:气体粒子流,异构的粒子排列,信道在颗粒床,格子Boltzmann仿真,分析的相关性,压降

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号