首页> 外文OA文献 >Automated model selection based tracking of multiple targets using particle filtering
【2h】

Automated model selection based tracking of multiple targets using particle filtering

机译:使用粒子滤波的基于模型自动选择的多个目标跟踪

摘要

Particle filtering is being investigated extensively due to its important feature of target tracking based on nonlinear and non-Gaussian models. It tracks a trajectory with a known model at a given time. It means that the particle filter tracks an arbitrary trajectory only if the time instant when the trajectory switches from one model to another model is known a priori. For this reason, a particle filter is not able to track any arbitrary trajectory where the transition instant from one model to another model is not known. Another problem with multiple trajectory tracking using particle filters is the data association, i.e. observation to track fusion. We propose a novel method, which overcomes both the above problems. An interacting multiple model based approach is used along with particle filtering, which automates the model selection process for tracking an arbitrary trajectory. The uncertainty about the origin of an observation is overcome by using a centroid of measurements to evaluate weights for particles as well as to calculate the likelihood of a model.
机译:由于粒子滤波基于非线性和非高斯模型的目标跟踪的重要特征,因此正在广泛研究。它在给定时间使用已知模型跟踪轨迹。这意味着仅当先验已知轨迹从一个模型切换到另一种模型的时刻时,粒子过滤器才会跟踪任意轨迹。因此,粒子过滤器无法跟踪从一个模型到另一个模型的过渡瞬间未知的任意轨迹。使用粒子滤波器的多轨迹跟踪的另一个问题是数据关联,即观察以跟踪融合。我们提出了一种新颖的方法,它克服了上述两个问题。基于交互的基于多个模型的方法与粒子滤波一起使用,可以自动执行模型选择过程以跟踪任意轨迹。通过使用测量的质心来评估粒子的权重以及计算模型的可能性,可以克服有关观察点起源的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号