首页> 外文OA文献 >A Dynamically Reconfigurable BbNN Architecture for Scalable Neuroevolution in Hardware
【2h】

A Dynamically Reconfigurable BbNN Architecture for Scalable Neuroevolution in Hardware

机译:一种动态可重构的BBNN架构,用于硬件中可伸缩神经内容

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a novel hardware architecture for neuroevolution is presented, aiming to enable the continuous adaptation of systems working in dynamic environments, by including the training stage intrinsically in the computing edge. It is based on the block-based neural network model, integrated with an evolutionary algorithm that optimizes the weights and the topology of the network simultaneously. Differently to the state-of-the-art, the proposed implementation makes use of advanced dynamic and partial reconfiguration features to reconfigure the network during evolution and, if required, to adapt its size dynamically. This way, the number of logic resources occupied by the network can be adapted by the evolutionary algorithm to the complexity of the problem, the expected quality of the results, or other performance indicators. The proposed architecture, implemented in a Xilinx Zynq-7020 System-on-a-Chip (SoC) FPGA device, reduces the usage of DSPs and BRAMS while introducing a novel synchronization scheme that controls the latency of the circuit. The proposed neuroevolvable architecture has been integrated with the OpenAI toolkit to show how it can efficiently be applied to control problems, with a variable complexity and dynamic behavior. The versatility of the solution is assessed by also targeting classification problems.
机译:在本文中,对于neuroevolution一种新颖的硬件体系结构提出,旨在使在动态环境中工作的系统中的连续适应,通过包括训练阶段本质上在计算边缘。它是基于基于块的神经网络模型,与进化算法优化的权重和所述网络的同时拓扑集成。不同的国家的最先进的,所提出的实现利用了先进的动态和部分重构功能进化过程中重新配置网络,并且如果需要,动态地适应其尺寸。通过这种方式,由网络所占用的逻辑资源的数量可以通过进化算法到问题的复杂性,结果的预期质量,或其他性能指标进行调整。所提出的架构,在实施了赛灵思ZYNQ-7020系统芯片(SoC)的FPGA器件,降低了DSP的和BRAM的使用,同时引入了一种新的同步方案,该方案控制电路的等待时间。所提出的neuroevolvable架构已经被集成到OpenAI工具包,以显示它如何能有效地应用于控制问题,具有可变的复杂性和动态行为。该解决方案的通用性,通过也靶向分类问题评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号