首页> 外文OA文献 >Near-Exact Distributions for Likelihood Ratio Statistics Used in the Simultaneous Test of Conditions on Mean Vectors and Patterns of Covariance Matrices
【2h】

Near-Exact Distributions for Likelihood Ratio Statistics Used in the Simultaneous Test of Conditions on Mean Vectors and Patterns of Covariance Matrices

机译:近乎精确的似然比统计分布,用于同时测试平均传感器和协方差矩阵模式的条件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The authors address likelihood ratio statistics used to test simultaneously conditions on mean vectors and patterns on covariance matrices. Tests for conditions on mean vectors, assuming or not a given structure for the covariance matrix, are quite common, since they may be easily implemented. But, on the other hand, the practical use of simultaneous tests for conditions on the mean vectors and a given pattern for the covariance matrix is usually hindered by the nonmanageability of the expressions for their exact distribution functions. The authors show the importance of being able to adequately factorize the c.f. of the logarithm of likelihood ratio statistics in order to obtain sharp and highly manageable near-exact distributions, or even the exact distribution in a highly manageable form. The tests considered are the simultaneous tests of equality or nullity of means and circularity, compound symmetry, or sphericity of the covariance matrix. Numerical studies show the high accuracy of the near-exact distributions and their adequacy for cases with very small samples and/or large number of variables. The exact and near-exact quantiles computed show how the common chi-square asymptotic approximation is highly inadequate for situations with small samples or large number of variables.
机译:作者地址解决了似然比统计数据用于同时测试协方差矩阵上的平均向量和模式的条件。假设或不是协方差矩阵的给定结构的均线上的测试是非常常见的,因为它们可以很容易地实现。但是,另一方面,对于平均载体的平均载体和给定图案的同时测试的实际使用通常由表达式的非管理性用于其精确分布函数的非管理性。作者表明能够充分修改C.f的重要性。似然比统计的对数,以获得夏普且高度可管理的近乎精确分布,甚至以高度可管理的形式分布。认为考试是同时测试平等或无能性,复合对称性或协方差基质的球形。数值研究表明,对于具有非常小的样本和/或大量变量的情况,近乎精确的分布的高精度及其充分性。所计算的精确和近精确的量级显示常见的Chi-Square渐近近似值是如何对具有小样本或大量变量的情况的情况高度不足。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号