首页> 外文OA文献 >PERFORMANCE COMPARISON OF SCENARIO-GENERATION METHODS APPLIED TO A STOCHASTIC OPTIMIZATION ASSET-LIABILITY MANAGEMENT MODEL
【2h】

PERFORMANCE COMPARISON OF SCENARIO-GENERATION METHODS APPLIED TO A STOCHASTIC OPTIMIZATION ASSET-LIABILITY MANAGEMENT MODEL

机译:应用于随机优化资产责任管理模式的情景生成方法的性能比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ABSTRACT In this paper, we provide an empirical discussion of the differences among some scenario tree-generation approaches for stochastic programming. We consider the classical Monte Carlo sampling and Moment matching methods. Moreover, we test the Resampled average approximation, which is an adaptation of Monte Carlo sampling and Monte Carlo with naive allocation strategy as the benchmark. We test the empirical effects of each approach on the stability of the problem objective function and initial portfolio allocation, using a multistage stochastic chance-constrained asset-liability management (ALM) model as the application. The Moment matching and Resampled average approximation are more stable than the other two strategies.
机译:摘要在本文中,我们提供了对随机编程的一些情景树生成方法的差异的实证探讨。我们考虑古典蒙特卡罗采样和时刻匹配方法。此外,我们测试重采采样的平均近似,这是蒙特卡罗采样和Monte Carlo与天真分配策略的适应作为基准。我们使用多级随机机会约束资产负债管理(ALM)模型作为应用程序来测试各种方法对问题目标函数和初始组合分配稳定性的实证效果。匹配和重采样的平均近似的那一刻比其他两种策略更稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号