首页> 外文OA文献 >Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity
【2h】

Data-Driven Modeling of Cholinergic Modulation of Neural Microcircuits: Bridging Neurons, Synapses and Network Activity

机译:神经微电路胆碱能调制的数据驱动建模:桥接神经元,突触和网络活动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuromodulators, such as acetylcholine (ACh), control information processing in neural microcircuits by regulating neuronal and synaptic physiology. Computational models and simulations enable predictions on the potential role of ACh in reconfiguring network activity. As a prelude into investigating how the cellular and synaptic effects of ACh collectively influence emergent network dynamics, we developed a data-driven framework incorporating phenomenological models of the physiology of cholinergic modulation of neocortical cells and synapses. The first-draft models were integrated into a biologically detailed tissue model of neocortical microcircuitry to investigate the effects of levels of ACh on diverse neuron types and synapses, and consequently on emergent network activity. Preliminary simulations from the framework, which was not tuned to reproduce any specific ACh-induced network effects, not only corroborate the long-standing notion that ACh desynchronizes spontaneous network activity, but also predict that a dose-dependent activation of ACh gives rise to a spectrum of neocortical network activity. We show that low levels of ACh, such as during non-rapid eye movement (nREM) sleep, drive microcircuit activity into slow oscillations and network synchrony, whereas high ACh concentrations, such as during wakefulness and REM sleep, govern fast oscillations and network asynchrony. In addition, spontaneous network activity modulated by ACh levels shape spike-time cross-correlations across distinct neuronal populations in strikingly different ways. These effects are likely due to the regulation of neurons and synapses caused by increasing levels of ACh, which enhances cellular excitability and decreases the efficacy of local synaptic transmission. We conclude by discussing future directions to refine the biological accuracy of the framework, which will extend its utility and foster the development of hypotheses to investigate the role of neuromodulators in neural information processing.
机译:神经调质,例如通过调节神经和突触生理学乙酰胆碱(ACh),控制信息处理神经微电路。计算模型和模拟启用乙酰胆碱的重新配置网络活动中的潜在作用的预测。作为一个前奏到研究如何乙酰胆碱的细胞和突触效应共同影响出现的网络动态,我们开发了新皮层结合细胞和突触的胆碱能调制的生理现象学模型数据驱动的框架。该机型的第一稿被纳入新皮层微电路的生物组织的详细模型,探讨乙酰胆碱的水平对不同类型的神经元和突触的影响,因此对新兴的网络活动。从框架,这是不调谐到重现任何特定的ACh诱导的网络效应的初步模拟,不仅证实了长期存在的概念,即乙酰胆碱解同步自发网络活动,但还预测,乙酰胆碱的剂量依赖性激活产生了新皮质的网络活动的频谱。我们发现乙酰胆碱水平低,如非快速眼动(NREM)睡眠,驱动微活动进入缓慢振荡和网络同步过程中,而高乙酰胆碱浓度,如觉醒和REM睡眠期间,管理快速振荡和网络异步。另外,通过乙酰胆碱的水平调制自发网络活动形状跨过不同的神经元群体尖峰时间互相关在显着不同的方式。这些影响可能是由于神经元而引起乙酰胆碱水平的不断提高突触的监管,增强细胞兴奋,并降低当地突触传递的疗效。最后,我们讨论未来的发展方向,以完善的框架,这将延长其效用和促进假说的发展研究神经调节的神经信息处理中的作用的生物准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号