首页> 外文OA文献 >THE INFLUENCE OF NATURAL CONVECTION ON THERMAL PROPERTIES OF BUILDING ENCLOSURE WITH POLYSTYRENE BOARDS/PUTŲ POLISTIRENO PLOKŠTĖMIS IZOLIUOTŲ PASTATŲ SIENŲ ŠILUMINIŲ SAVYBIŲ PRIKLAUSOMYBĖ NUO NATŪRALIOS KONVEKCIJOS
【2h】

THE INFLUENCE OF NATURAL CONVECTION ON THERMAL PROPERTIES OF BUILDING ENCLOSURE WITH POLYSTYRENE BOARDS/PUTŲ POLISTIRENO PLOKŠTĖMIS IZOLIUOTŲ PASTATŲ SIENŲ ŠILUMINIŲ SAVYBIŲ PRIKLAUSOMYBĖ NUO NATŪRALIOS KONVEKCIJOS

机译:自然会议对建筑外壳热性能的影响,聚苯乙烯板/泡沫聚苯乙烯板隔离建筑墙热特性依赖自然对流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Building insulating materials with good insulation properties usually are porous, because they contain large amounts of air or other gas inside. The pore system can be closed, as in many cellular plastics, or open as in fibre materials. The mechanisms of heat transfer in porous material are: conduction in solid phase, radiation within material and conduction due to the gas confined in the insulation. In an open-pore material, like lightweight mineral wool, the transportation of heat can be further increased by air movement (convection) through the permeable material. Convection is impossible in a closed porous materials like polystyrene (EPS, XPS) boards. But heat losses can be increased by air movement if there are cracks between boards and other building envelope structures. The airflow velocity and direction may vary strongly due to the changing boundary condition. However, at the present time in Lithuania convection in insulating materials is considered as non-existent, when calculating heat transmission and designing building structures. Because of the lack of knowledge concerning air movement in external building structures, and how it is affecting the heat transfer, this investigation has been carried out. For research an equipment (Fig 2) was made, assigned for exploring both vertical and horizontal structures (height 2100 mm, width 1100 mm and thickness up to 300 mm). For reducing heat losses through the sides up to minimum, an equipment was built from slabs (thickness 150 mm). As the hot side of equipment gypsum board was applied to the surface of which 8 heat flow sensors and 9 thermocouples were attached. For maintaining constant and isothermal temperature of the surface of this partition (Θi, =+20°C), heating elements and ventilators were mounted inside the equipment. The cold surface of the equipment was of the same construction as the warm one only with the regulated slide valve with an area of 0,02 m2. It allows exploring the so-called not-ventilated structures. During the test, temperature was measured at different places and depths. The research was performed on the foam polystyrene plates of 3×50 mm of thickness with 3–5 mm air gaps. Measurements were conducted in the following sequence:• Two basic measurements of closed structure were performed for constant values of temperatures Θe=0°C and Θe=10°C. In this case the structure was held horizontally and heat flow was directed from top to bottom. Therefore it could be assumed that heat was transferred by conduction and radiation.• Measurements of the closed structure were performed on the equipment being in vertical position and for external temperature Θe=0°C and Θe=10°C.• Measurements of the opened structure. The measurement carried out for the same external environment conditions, the ventilating orifice being opened.The results of laboratory experiments allowed to assess the heat losses of the enclosure being arranged in the form of wall with air gaps applying foam polystyrene slabs. Different types of structures being investigated are shown in Fig 1. The Nu numbers for closed and ventilated structures are presented in Figs 8 and 9.The research results could be applied to enclosures with hard type insulation too. Although the natural convection does not occur inside the ideal material, but it takes place inside enclosure with air gaps.Thus, actual U-value depends on structural solutions and air tightness on building envelope. If wind barrier is permeable, then air filtration through the structure may cause even critical values for heat losses.First Published Online: 26 Jul 2012
机译:具有良好的绝缘性能的绝缘构建材料通常是多孔的,因为它们含有大量的空气或其他气体的内部。孔系统可在许多细胞塑料被关闭,如,或者作为纤维材料开放。在多孔材料的热传递的机制是:材料和传导内以固相的传导,辐射由于在绝缘限定的气体。在一个开孔材料,如轻质矿物棉,热的输送,可以进一步通过可渗透材料增加了空气的移动(对流)。对流在一个封闭的多孔材料,如聚苯乙烯(EPS,XPS)板是不可能的。但热损失可以,如果有板和其它建筑物围护结构之间的裂缝被增加空气的运动。气流速度和方向可以因改变边界条件变化很大。然而,在绝缘材料中立陶宛对流本时间计算热传递和设计建筑结构时被认为是不存在的。由于缺乏关于外部建筑结构的空气运动的知识,以及它是如何影响传热,这项调查已经进行。对于研究中的一个设备(图2)制成,分配为探索垂直和水平结构(高度2100毫米,宽度1100毫米和厚度高达300毫米)。对于通过侧到最低限度减少热损失,设备从板坯内置(厚度150mm)上。作为设备石膏板的热侧被施加到其中8个热流量传感器和9个热电偶附着于表面。为了保持恒定的和该分区的表面的等温温度(θ1,= + 20℃),加热元件和风扇被安装在设备内。该设备的冷的表面是相同的结构只用0.02平方米的面积调节滑阀的一个温暖的。它允许探索所谓的不通风的结构。在试验过程中,温度在不同的位置和深度进行测定。这项研究是在与3-5毫米的空气间隙3×50毫米厚的泡沫聚苯乙烯板中进行。测量是在下列顺序进行的:•封闭结构的两个基本测量对温度θE= 0℃,θE= 10℃的恒定值来执行。在这种情况下,结构保持水平和热流被从顶部到底部导向。因此,可以假定热被传导和辐射转移。•封闭结构的测量是在所述设备处于垂直位置是和外部温度θE= 0℃,θE= 10℃下进行。•开放结构的测量。对于相同的外部环境的条件下进行测量时,该换气口被打开。的允许评估所述外壳的热损失实验室实验的结果,被布置成与施加泡沫聚苯乙烯板坯空气间隙壁的形式。不同类型的被调查结构被示于图1。封闭通风结构N u个数字在图8和9给出。该研究成果可应用于硬型绝缘罩了。虽然自然对流不理想的材料内发生,但它发生内部外壳具有空气间隙。因此,实际的U值取决于在围护结构的解决方案和气密性。如果风障是可渗透的,通过该结构然后空气过滤可热损失导致甚至临界值。首次出版在线:2012年7月26日

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号