首页> 外文OA文献 >Extracting information from RNA SHAPE data: Kalman filtering approach
【2h】

Extracting information from RNA SHAPE data: Kalman filtering approach

机译:从RNA形状数据提取信息:卡尔曼滤波方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

RNA SHAPE experiments have become important and successful sources of information for RNA structure prediction. In such experiments, chemical reagents are used to probe RNA backbone flexibility at the nucleotide level, which in turn provides information on base pairing and therefore secondary structure. Little is known, however, about the statistics of such SHAPE data. In this work, we explore different representations of noise in SHAPE data and propose a statistically sound framework for extracting reliable reactivity information from multiple SHAPE replicates. Our analyses of RNA SHAPE experiments underscore that a normal noise model is not adequate to represent their data. We propose instead a log-normal representation of noise and discuss its relevance. Under this assumption, we observe that processing simulated SHAPE data by directly averaging different replicates leads to bias. Such bias can be reduced by analyzing the data following a log transformation, either by log-averaging or Kalman filtering. Application of Kalman filtering has the additional advantage that a prior on the nucleotide reactivities can be introduced. We show that the performance of Kalman filtering is then directly dependent on the quality of that prior. We conclude the paper with guidelines on signal processing of RNA SHAPE data.
机译:RNA形状实验已经成为RNA结构预测的重要信息来源。在这样的实验中,化学试剂用于探测在核苷酸水平的RNA骨架柔性,这又提供了关于碱基配对和因此二级结构的信息。然而,对于这种形状数据的统计,众所周知。在这项工作中,我们探讨了形状数据中的噪声的不同表示,并提出了一种用于从多种形状复制中提取可靠的反应性信息的统计声音框架。我们对RNA形状实验的分析强调了正常的噪声模型不足以代表其数据。我们提出了噪音的日志正常表示,并讨论其相关性。在这种假设下,我们观察到通过直接平均不同的复制来处理模拟形状数据导致偏置。通过对日志变换之后的数据进行分析,可以通过对日志平均或卡尔曼滤波来减少这种偏差。 Kalman滤波的应用具有额外的优点,即可以引入在核苷酸反应性上的额外优点。我们表明卡尔曼滤波的性能直接依赖于之前的质量。我们将本文与RNA形状数据的信号处理指南结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号