首页> 外文OA文献 >Downward-Looking Linear Array 3D SAR Imaging Based on Multiple Measurement Vectors Model and Continuous Compressive Sensing
【2h】

Downward-Looking Linear Array 3D SAR Imaging Based on Multiple Measurement Vectors Model and Continuous Compressive Sensing

机译:基于多测量向量模型的向下看线性阵列3D SAR成像和连续压缩传感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper concerns the problems of huge data and off-grid effect of cross-track direction in downward-looking linear array (DLLA) 3D SAR imaging. Since the 3D imaging needs a great deal of memory space, we consider the methods of downsampling to reduce the data quantity. In the azimuth direction, we proposed a method based on the multiple measurement vectors (MMV) model, which can enhance computational efficiency and elevate the performance of antinoise, to recover the signal. Further, in cross-track direction, since the resolution is restricted by the length of array, as well as platform size, the influence of off-grid effect is more serious than azimuth direction. Continuous compressive sensing (CCS), which can solve the off-grid effect of the classical compressive sensing (CS), is presented to obtain the precise imaging result under the noise scenarios. Finally, we validate our method by extension numerical experiments.
机译:本文涉及向下看线性阵列(DLLA)3D SAR成像中交叉轨道方向的巨大数据和越来越大网格效应的问题。由于3D成像需要大量的存储空间,因此我们考虑下采样的方法以减少数据量。在方位角方向上,我们提出了一种基于多个测量向量(MMV)模型的方法,可以提高计算效率并提高抗体的性能,以恢复信号。此外,在交叉轨道方向上,由于分辨率受到阵列的长度的限制,以及平台尺寸,偏离网格效应的影响比方位角方向更严重。可以解决经典压缩感测(CS)的离网效果的连续压缩感测(CCS),以获得在噪声场景下获得精确的成像结果。最后,我们通过扩展数值实验验证我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号