首页> 外文OA文献 >Reducing the Complexity of Complex Gene Coexpression Networks by Coupling Multiweighted Labeling with Topological Analysis
【2h】

Reducing the Complexity of Complex Gene Coexpression Networks by Coupling Multiweighted Labeling with Topological Analysis

机译:通过耦合多重标记与拓扑分析来降低复杂基因共抑制网络的复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Undirected gene coexpression networks obtained from experimental expression data coupled with efficient computational procedures are increasingly used to identify potentially relevant biological information (e.g., biomarkers) for a particular disease. However, coexpression networks built from experimental expression data are in general large highly connected networks with an elevated number of false-positive interactions (nodes and edges). In order to infer relevant information, the network must be properly filtered and its complexity reduced. Given the complexity and the multivariate nature of the information contained in the network, this requires the development and application of efficient feature selection algorithms to be able to exploit the topological characteristics of the network to identify relevant nodes and edges. This paper proposes an efficient multivariate filtering designed to analyze the topological properties of a coexpression network in order to identify potential relevant genes for a given disease. The algorithm has been tested on three datasets for three well known and studied diseases: acute myeloid leukemia, breast cancer, and diffuse large B-cell lymphoma. Results have been validated resorting to bibliographic data automatically mined using the ProteinQuest literature mining tool.
机译:从具有有效计算程序耦合的实验表达数据获得的无向基因共抑制网络越来越多地用于识别特定疾病的潜在相关的生物信息(例如,生物标志物)。然而,由实验表达数据构建的共塑造网络是一般的大型高度连接网络,具有升高的假正相互作用(节点和边缘)。为了推断相关信息,必须正确过滤网络,并且其复杂性降低。鉴于网络中包含的信息的复杂性和多元性质,这需要开发和应用有效的特征选择算法,以便能够利用网络的拓扑特性来识别相关节点和边缘。本文提出了一种有效的多变量滤波,旨在分析共表达网络的拓扑特性,以识别给定疾病的潜在相关基因。该算法已经在三个众所周知和研究疾病的三种数据集上进行了测试:急性髓性白血病,乳腺癌和弥漫性大B细胞淋巴瘤。结果已经验证了使用Quotiest文献采矿工具自动开采的书目数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号