首页> 外文OA文献 >In-Situ Synthesis of Hydrogen Titanate Nanotube/Graphene Composites with a Chemically Bonded Interface and Enhanced Visible Photocatalytic Activity
【2h】

In-Situ Synthesis of Hydrogen Titanate Nanotube/Graphene Composites with a Chemically Bonded Interface and Enhanced Visible Photocatalytic Activity

机译:原位合成钛酸氢纳米管/石墨烯复合材料,具有化学键合界面和增强的可见光催化活性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrogen titanate nanotube (HTT)/graphene nanocomposites are synthesized by hydrothermal reduction of graphene oxide (GO) and simultaneous preparation of nanotubular HTT via an alkaline hydrothermal process. By using this facile in-situ compositing strategy, HTT are densely supported upon the surface of graphene sheets with close interface contacts. The as-prepared HTT/graphene nanocomposites possess significantly enhanced visible light catalytic activity for the partial oxidation of benzylic alcohols. The amount of graphene has significant influence on catalytic activity and the optimal content of graphene is 1.0 wt %, giving a normalized rate constant k of 1.71 × 10−3 g/m2·h, which exceeds that of pure HTT and HTT/graphene-1.0% mixed by a factor of 7.1 or 5.2. Other than the general role of graphene as a high-performance electron acceptor or transporter, the observed enhancement in photocatalytic activity over HTT/graphene can be ascribed to the improved interfacial charge migration from enhanced chemical bonding (Ti–C bonds) during the in-situ compositing process. The formation of Ti–C bonds is confirmed by XPS analysis and the resulting enhanced separation of photoinduced charge carriers is demonstrated by electrochemical impedance spectra and transient photocurrent response.
机译:钛酸盐纳米管(HTT)/石墨烯纳米复合材料通过碱液氧化物(GO)的水热还原并通过碱性水热法同时制备纳米管HTT。通过使用这种容易的原位合成策略,HTT在具有近距离接口触点的石墨烯片表面上密度负载。制备的HTT /石墨烯纳米复合材料具有显着增强的可见光催化活性,用于苄基醇的部分氧化。石墨烯的量对催化活性产生显着影响,石墨烯的最佳含量为1.0wt%,给出归一化速率常数k为1.71×10-3g / m 2·h,超过纯HTT和HTT /石墨烯 - 1.0%混合尺寸为7.1或5.2。除了石墨烯作为高性能电子受体或转运蛋白的一般作用之外,在HTT /石墨烯上观察到的光催化活性的增强可以归因于在in-的增强的化学键(Ti-C键)的改善的界面电荷迁移。原位合成过程。通过XPS分析确认Ti-C键的形成,通过电化学阻抗谱和瞬态光电流响应来证明所得到的光致电荷载体的增强分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号