首页> 外文OA文献 >Primary Productivity Dynamics in the Summer Arctic Ocean Confirms Broad Regulation of the Electron Requirement for Carbon Fixation by Light-Phytoplankton Community Interaction
【2h】

Primary Productivity Dynamics in the Summer Arctic Ocean Confirms Broad Regulation of the Electron Requirement for Carbon Fixation by Light-Phytoplankton Community Interaction

机译:夏季北冰洋的初级生产力动力学证实了通过光 - 浮游植物群落相互作用对碳固定的电子需求的广泛调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predicting conversion of photosynthetic electron transport to inorganic carbon uptake rates (the so-called electron requirement for carbon fixation, KC) is central to the broad scale deployment of Fast Repetition Rate fluorometry (FRRf) for primary productivity studies. However, reconciling variability of KC over space and time to produce robust algorithms remains challenging, given the large number of factors that influence KC. We have previously shown that light appears to be a proximal driver of Kc in several ocean regions and we therefore examined whether and how light similarly regulated KC variability in the Arctic Ocean, during a summer cruise in 2016. Sampling transited ice-free and ice-covered waters, with temperature, salinity and Chl-a concentrations all higher for the ice-free than ice covered surface waters. Micro- and pico-phytoplankton generally dominated the ice-free and ice-covered waters, respectively. Values of KC, determined from parallel measures of daily integrated electron transport rates and 14C-uptake, were overall lower for the ice-covered vs. ice-free stations. As in our previous studies, KC was strongly linearly correlated to daily PAR (r = 0.68, n = 46, p < 0.001) and this relationship could be further improved (r = 0.84, n = 46, p < 0.001) by separating samples into ice-free (micro-phytoplankton dominated) vs. ice-covered (Nano- and Pico-phytoplankton dominated water. We subsequently contrasted the PAR-KC relationship form the Arctic waters with the previous relationships from the Ariake Bay and East China Sea and revealed that these various PAR-KC relationships can be systematically explained across regions by phytoplankton community size structures. Specifically, the value of the linear slope describing PAR-KC decreases as water bodies have an increasing fraction of larger phytoplankton. We propose that this synoptic trend reflects how phytoplankton community structure integrates past and immediate environmental histories and hence may be a better broad-scale predictor of KC than specific environmental factors such as temperature and nutrients. We provide a novel algorithm that may enable broad-scale retrieval of CO2 uptake from FRRf with knowledge of light and phytoplankton community size information.
机译:预测光合电子传输与无机碳吸收率的转化(所谓的碳固定,KC的电子需求)是用于初级生产力研究的快速重复率荧光测量(FRRF)的广泛规模部署的核心。然而,鉴于影响KC的大量因素,鉴于影响KC的大量因素,核对空间和时间的核心空间和时间的可变性仍然具有挑战性。我们之前已经表明,在几个海洋地区,我们似乎是KC的近端驾驶员,我们在2016年夏季巡航期间检查了北极海洋中的KC变异性是否和光线变异。采样过渡了无冰和冰 - 覆盖的水,温度,盐度和CHL-A浓度,浓度高于冰覆盖的表面水的冰块。微型和微微浮游植物通常分别以无冰和冰盖的水占主导地位。基于日常集成电子传输速率和14℃吸收的平行测量确定的KC值对于冰覆盖的与冰停工总体而言。与我们之前的研究一样,KC与日常靶线性相关(r = 0.68,n = 46,p <0.001),通过分离样品,可以进一步改善这种关系(r = 0.84,n = 46,p <0.001)进入无冰(微浮游植物)与冰覆盖的(纳米和微微浮游植物占主导地水。我们随后与北极水域与来自Ariake Bay和东海和东海的以前的关系形成鲜明对比。揭示这些各种PAR-KC关系可以通过浮游植物群落规模结构来系统地解释。具体而言,描述PAR-KC的线性斜率的值随着水体具有较大的浮游植物的较高分数而降低。我们提出这种概要趋势反映了Phytoplankton群落结构如何整合过去和立即的环境历史,因此可能是KC的更好的广泛预测因子,而不是温度和螺母等特定的环境因素rensient。我们提供一种新颖的算法,可以使来自FRRF的CO2摄取的大规模检索具有光线和浮游植物群落规模信息的知识。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号