首页> 外文OA文献 >Extended similarity indices: the benefits of comparing more than two objects simultaneously. Part 1: Theory and characteristics†
【2h】

Extended similarity indices: the benefits of comparing more than two objects simultaneously. Part 1: Theory and characteristics†

机译:扩展相似性指数:同时比较两个以上对象的好处。第1部分:理论和特征†

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Quantification of the similarity of objects is a key concept in many areas of computational science. This includes cheminformatics, where molecular similarity is usually quantified based on binary fingerprints. While there is a wide selection of available molecular representations and similarity metrics, there were no previous efforts to extend the computational framework of similarity calculations to the simultaneous comparison of more than two objects (molecules) at the same time. The present study bridges this gap, by introducing a straightforward computational framework for comparing multiple objects at the same time and providing extended formulas for as many similarity metrics as possible. In the binary case (i.e. when comparing two molecules pairwise) these are naturally reduced to their well-known formulas. We provide a detailed analysis on the effects of various parameters on the similarity values calculated by the extended formulas. The extended similarity indices are entirely general and do not depend on the fingerprints used. Two types of variance analysis (ANOVA) help to understand the main features of the indices: (i) ANOVA of mean similarity indices; (ii) ANOVA of sum of ranking differences (SRD). Practical aspects and applications of the extended similarity indices are detailed in the accompanying paper: Miranda-Quintana et al. J Cheminform. 2021. https://doi.org/10.1186/s13321-021-00504-4 . Python code for calculating the extended similarity metrics is freely available at: https://github.com/ramirandaq/MultipleComparisons .
机译:摘要对象相似性的量化是计算科学许多领域的关键概念。这包括化学信息学,其中分子相似度通常基于二元指纹量化。虽然有广泛的可用分子表示和相似度指标,但是以前没有努力将相似性计算的计算框架扩展到同时同时比较多于两个物体(分子)。本研究通过引入用于比较多个对象的直接计算框架并同时向多个对象提供尽可能多的相似度量的扩展公式来桥接该差距。在二进制案例中(即将两种分子对比较),这些是天然还原为其众所周知的公式。我们提供了关于各种参数对扩展公式计算的相似性值的影响的详细分析。扩展相似度指数完全是一般的,不依赖于所使用的指纹。两种类型的方差分析(ANOVA)有助于了解指数的主要特征:(i)平均相似索引的ANOVA; (ii)排名差异总和(SRD)的ANOVA。延长相似度指数的实际方面和应用在附录中详述:Miranda-Quintana等。 J Cheminform。 2021. https://doi.org/10.1186/s13321-021-00504-4用于计算扩展相似度指标的Python代码可在:https://github.com/ramirandaq/multiplecomparisons。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号