首页> 外文OA文献 >Nonlinear Friction and Dynamical Identification for a Robot Manipulator with Improved Cuckoo Search Algorithm
【2h】

Nonlinear Friction and Dynamical Identification for a Robot Manipulator with Improved Cuckoo Search Algorithm

机译:具有改进的杜鹃搜索算法的机器人操纵器的非线性摩擦和动力识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper concerns the problem of dynamical identification for an industrial robot manipulator and presents an identification procedure based on an improved cuckoo search algorithm. Firstly, a dynamical model of a 6-DOF industrial serial robot has been derived. And a nonlinear friction model is added to describe the friction characteristic at motion reversal. Secondly, we use a cuckoo search algorithm to identify the unknown parameters. To enhance the performance of the original algorithm, both chaotic operator and emotion operator are employed to help the algorithm jump out of local optimum. Then, the proposed algorithm has been implemented on the first three joints of the ER-16 robot manipulator through an identification experiment. The results show that (1) the proposed algorithm has higher identification accuracy over the cuckoo search algorithm or particle swarm optimization algorithm and (2) compared to linear friction model the nonlinear model can describe the friction characteristic of joints better.
机译:本文涉及工业机器人操纵器的动态识别问题,并基于改进的杜鹃搜索算法呈现识别过程。首先,已经得出了6-DOF工业串行机器人的动态模型。添加非线性摩擦模型以描述运动逆转的摩擦特性。其次,我们使用杜鹃搜索算法来识别未知参数。为了增强原始算法的性能,使用混沌操作员和情感运算符来帮助算法跳出本地最佳。然后,通过识别实验,已经在ER-16机器人操纵器的前三个接头上实现了所提出的算法。结果表明,(1)所提出的算法通过Cuckoo搜索算法或粒子群优化算法的识别精度越高,与线性摩擦模型相比,非线性模型可以更好地描述关节的摩擦特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号