首页> 外文OA文献 >Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae
【2h】

Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae

机译:优化醋酸盐的代谢工程策略,糖酵母酿酒酵母中的乙醇产量和OsMotolerance

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Glycerol, whose formation contributes to cellular redox balancing and osmoregulation in Saccharomyces cerevisiae, is an important by-product of yeast-based bioethanol production. Replacing the glycerol pathway by an engineered pathway for NAD+-dependent acetate reduction has been shown to improve ethanol yields and contribute to detoxification of acetate-containing media. However, the osmosensitivity of glycerol non-producing strains limits their applicability in high-osmolarity industrial processes. This study explores engineering strategies for minimizing glycerol production by acetate-reducing strains, while retaining osmotolerance. Results GPD2 encodes one of two S. cerevisiae isoenzymes of NAD+-dependent glycerol-3-phosphate dehydrogenase (G3PDH). Its deletion in an acetate-reducing strain yielded a fourfold lower glycerol production in anaerobic, low-osmolarity cultures but hardly affected glycerol production at high osmolarity. Replacement of both native G3PDHs by an archaeal NADP+-preferring enzyme, combined with deletion of ALD6, yielded an acetate-reducing strain the phenotype of which resembled that of a glycerol-negative gpd1Δ gpd2Δ strain in low-osmolarity cultures. This strain grew anaerobically at high osmolarity (1 mol L−1 glucose), while consuming acetate and producing virtually no extracellular glycerol. Its ethanol yield in high-osmolarity cultures was 13% higher than that of an acetate-reducing strain expressing the native glycerol pathway. Conclusions Deletion of GPD2 provides an attractive strategy for improving product yields of acetate-reducing S. cerevisiae strains in low, but not in high-osmolarity media. Replacement of the native yeast G3PDHs by a heterologous NADP+-preferring enzyme, combined with deletion of ALD6, virtually eliminated glycerol production in high-osmolarity cultures while enabling efficient reduction of acetate to ethanol. After further optimization of growth kinetics, this strategy for uncoupling the roles of glycerol formation in redox homeostasis and osmotolerance can be applicable for improving performance of industrial strains in high-gravity acetate-containing processes.
机译:摘要背景甘油,其形成有助于细胞氧化还原平衡和蛋白质中的酿酒酵母酿酒酵母,是酵母基生物乙醇生产的重要副产物。已经显示通过工程化途径替换甘油途径,已经显示出改善乙醇产率并有助于含乙酸盐的培养基的解毒。然而,甘油非生产菌株的渗透染率将其在高渗透性工业过程中的适用性限制。本研究探讨了通过醋酸盐降低菌株最小化甘油生产的工程策略,同时保留渗透压。结果GPD2编码NAD + - 依赖性甘油-3-磷酸脱氢酶(G3PDH)的两种酿酒酵母同工酶中的一种。其在减少乙酸盐降低的菌株中的缺失产生了厌氧,低渗透压培养物中的四倍降低甘油生产,但在高渗透压下几乎影响了甘油生产。通过古代NADP + -Preferring酶更换天然G3PDHs,与ALD6的缺失相结合,得到乙酸盐降低的菌株,其表型类似于低渗透性培养物中的甘油阴性GPD1ΔGPD2δ菌株的表型。该菌株在高渗透压(1mol L-1葡萄糖)处厌氧上致尖端,同时消耗醋酸盐,几乎不会产生细胞外甘油。其高渗透性培养物中的乙醇产率高于表达天然甘油途径的乙酸盐还原菌株的13%。结论GPD2的缺失提供了一种有吸引力的策略,可提高低渗透培养基中的醋酸钙菌菌株的产量产量。通过异源NADP + -Preferring酶更换天然酵母G3PDHs,与ALD6的缺失相结合,在高渗透压培养物中实际上消除了甘油生产,同时能够有效地将乙酸盐降低到乙醇中。在进一步优化生长动力学之后,这种解除甘油形成在氧化还原性稳态和OsMotolerace中的作用的策略可以适用于改善含高重力乙酸乙酸工艺的工业菌株的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号