首页> 外文OA文献 >Sorting big data by revealed preference with application to college ranking
【2h】

Sorting big data by revealed preference with application to college ranking

机译:通过透露偏好与大学排名进行排序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract When ranking big data observations such as colleges in the United States, diverse consumers reveal heterogeneous preferences. The objective of this paper is to sort out a linear ordering for these observations and to recommend strategies to improve their relative positions in the ranking. A properly sorted solution could help consumers make the right choices, and governments make wise policy decisions. Previous researchers have applied exogenous weighting or multivariate regression approaches to sort big data objects, ignoring their variety and variability. By recognizing the diversity and heterogeneity among both the observations and the consumers, we instead apply endogenous weighting to these contradictory revealed preferences. The outcome is a consistent steady-state solution to the counterbalance equilibrium within these contradictions. The solution takes into consideration the spillover effects of multiple-step interactions among the observations. When information from data is efficiently revealed in preferences, the revealed preferences greatly reduce the volume of the required data in the sorting process. The employed approach can be applied in many other areas, such as sports team ranking, academic journal ranking, voting, and real effective exchange rates.
机译:摘要当在美国进行大学等大数据观测时,多元化的消费者揭示异质偏好。本文的目的是为这些观察结果进行整个线性排序,并建议改善排名中的相对位置的策略。正确排序的解决方案可以帮助消费者做出正确的选择,政府做出明智的政策决策。以前的研究人员应用了外源加权或多元回归方法来对大数据对象进行排序,忽略它们的变化和变异性。通过认识到观察和消费者之间的多样性和异质性,而是将内源加权施加到这些矛盾揭示的偏好。结果是在这些矛盾内的平衡均衡的一致稳态解决方案。解决方案考虑了观察中多步相互作用的溢出效应。当在偏好中有效地揭示来自数据的信息时,揭示的偏好大大减少了排序过程中所需数据的体积。这些采用的方法可以应用于许多其他领域,例如运动队排名,学术期刊排名,投票和实际有效汇率。

著录项

  • 作者

    Xingwei Hu;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号