首页> 外文OA文献 >A Derived QSAR Model for Predicting Some Compounds as Potent Antagonist against Mycobacterium tuberculosis: A Theoretical Approach
【2h】

A Derived QSAR Model for Predicting Some Compounds as Potent Antagonist against Mycobacterium tuberculosis: A Theoretical Approach

机译:一种衍生的QSAR模型,用于预测一些化合物作为具有结核分枝杆菌的有效拮抗剂:一种理论方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Development of more potent antituberculosis agents is as a result of emergence of multidrug resistant strains of M. tuberculosis. Novel compounds are usually synthesized by trial approach with a lot of errors, which is time consuming and expensive. QSAR is a theoretical approach, which has the potential to reduce the aforementioned problem in discovering new potent drugs against M. tuberculosis. This approach was employed to develop multivariate QSAR model to correlate the chemical structures of the 2,4-disubstituted quinoline analogues with their observed activities using a theoretical approach. In order to build the robust QSAR model, Genetic Function Approximation (GFA) was employed as a tool for selecting the best descriptors that could efficiently predict the activities of the inhibitory agents. The developed model was influenced by molecular descriptors: AATS5e, VR1_Dzs, SpMin7_Bhe, TDB9e, and RDF110s. The internal validation test for the derived model was found to have correlation coefficient (R2) of 0.9265, adjusted correlation coefficient (R2 adj) value of 0.9045, and leave-one-out cross-validation coefficient (Q_cv∧2) value of 0.8512, while the external validation test was found to have (R2 test) of 0.8034 and Y-randomization coefficient (cR_p∧2) of 0.6633. The proposed QSAR model provides a valuable approach for modification of the lead compound and design and synthesis of more potent antitubercular agents.
机译:更有效的抗尿剂的发展是由于结核病多药抗性菌株的出现。新化合物通常通过试验方法合成,具有大量误差,这是耗时和昂贵的。 QSAR是一种理论上的方法,有可能降低对患有结核病的新有效药物的上述问题。使用这种方法来发展多元QSAR模型,以使用理论方法将2,4-二取代的喹啉类似物的化学结构与其观察到的活动相关联。为了构建稳健的QSAR模型,遗传函数近似(GFA)作为选择最佳描述符的工具,其能够有效地预测抑制剂的活性。开发模型受分子描述符的影响:Aats5e,VR1_DZS,SPMIN7_BHE,TDB9E和RDF110S。发现导出模型的内部验证测试具有0.9265的相关系数(R2),调整后的相关系数(R2 adj)值为0.9045,并留出一张交叉验证系数(q_cv∧2)值为0.8512,虽然发现外部验证测试具有0.8034和Y-随机化系数(CR_P∧2)的0.6633的r2测试。所提出的QSAR模型提供了一种有价值的方法,用于改性铅化合物和更有效的抗细胞剂的设计和合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号