首页> 外文OA文献 >Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine
【2h】

Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

机译:单缸柴油发动机燃烧模型与控制参数优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO) was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.
机译:该研究提出了一种构造燃烧模型的方法和一种优化柴油发动机的一些控制参数的方法,以开发基于模型的控制系统。该模型的施工目的是适当地管理某些控制参数以获得燃料消耗和发射作为发动机输出目标的值。考虑多型性度的逐步方法应用于用多项式模型构建燃烧模型。建立了使用单缸柴油机的实验数据,建立了多次注射柴油发动机上的电源,BSFC,NOx和烟灰模型。所提出的方法成功地开发了描述了与发动机输出相关的控制参数的模型。尽管可以安装到柴油发动机的许多控制装置,但是优化技术需要利用该方法在各个排放控制方法的现有发展旁边有效地找到最佳发动机操作条件。粒子群优化(PSO)用于计算控制参数以优化基于模型的燃料消耗和发射。所提出的方法能够有效地计算控制参数以基于模型优化评估项。最后,在微控制器中编译了添加PSO的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号