首页> 外文OA文献 >An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes
【2h】

An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes

机译:一种改进的风力涡轮箱在线故障检测亮度算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is widely accepted that conventional boost algorithms are of low efficiency and accuracy in dealing with big data collected from wind turbine operations. To address this issue, this paper is devoted to the application of an adaptive LightGBM method for wind turbine fault detections. To this end, the realization of feature selection for fault detection is firstly achieved by utilizing the maximum information coefficient to analyze the correlation among features in supervisory control and data acquisition (SCADA) of wind turbines. After that, a performance evaluation criterion is proposed for the improved LightGBM model to support fault detections. In this scheme, by embedding the confusion matrix as a performance indicator, an improved LightGBM fault detection approach is then developed. Based on the adaptive LightGBM fault detection model, a fault detection strategy for wind turbine gearboxes is investigated. To demonstrate the applications of the proposed algorithms and methods, a case study with a three-year SCADA dataset obtained from a wind farm sited in Southern China is conducted. Results indicate that the proposed approaches established a fault detection framework of wind turbine systems with either lower false alarm rate or lower missing detection rate.
机译:众所周知,传统的升压算法具有低效率和准确性,在处理从风力涡轮机操作中收集的大数据。为了解决这个问题,本文致力于应用自适应LightGBM方法进行风力涡轮机故障检测。为此,首先利用最大信息系数来分析风力涡轮机的监督控制和数据采集(SCADA)的特征之间的相关性来实现故障检测特征选择的实现。之后,提出了用于改进的LightGBM模型来支持故障检测的性能评估标准。在该方案中,通过将混淆矩阵作为性能指示器嵌入,然后开发出改进的LightGBM故障检测方法。基于自适应灯泡故障检测模型,研究了风力涡轮机齿轮箱的故障检测策略。为了展示所提出的算法和方法的应用,案例研究与中国南方占地的风电场中获得的三年SCADA数据集进行了研究。结果表明,该拟议方法建立了风力涡轮机系统的故障检测框架,具有较低的误报率或较低的检测率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号