首页> 外文OA文献 >Adaptive iterative working state prediction based on the double unscented transformation and dynamic functioning for unmanned aerial vehicle lithium-ion batteries
【2h】

Adaptive iterative working state prediction based on the double unscented transformation and dynamic functioning for unmanned aerial vehicle lithium-ion batteries

机译:基于双重无人变换和无人空中车辆锂离子电池的自适应迭代工作状态预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In lithium-ion batteries, the accuracy of estimation of the state of charge is a core parameter which will determine the power control accuracy and management reliability of the energy storage systems. When using unscented Kalman filtering to estimate the charge of lithium-ion batteries, if the pulse current change rate is too high, the tracking effects of algorithms will not be optimal, with high estimation errors. In this study, the unscented Kalman filtering algorithm is improved to solve the above problems and boost the Kalman gain with dynamic function modules, so as to improve system stability. The closed-circuit voltage of the system is predicted with two non-linear transformations, so as to improve the accuracy of the system. Meanwhile, an adaptive algorithm is developed to predict and correct the system noises and observation noises, thus enhancing the robustness of the system. Experiments show that the maximum estimation error of the second-order Circuit Model is controlled to less than 0.20V. Under various simulation conditions and interference factors, the estimation error of the unscented Kalman filtering is as high as 2%, but that of the improved Kalman filtering algorithm are kept well under 1.00%, with the errors reduced by 0.80%, therefore laying a sound foundation for the follow-up research on the battery management system.
机译:在锂离子电池中,充电状态的估计精度是核心参数,该核心参数将确定能量存储系统的功率控制精度和管理可靠性。当使用Unscented Kalman滤波来估计锂离子电池的电荷时,如果脉冲电流变化率太高,则算法的跟踪效果将不是最佳的,具有高估计误差。在这项研究中,改进了Unscented Kalman滤波算法以解决上述问题,并通过动态功能模块提高卡尔曼增益,从而提高系统稳定性。使用两个非线性变换预测系统的闭路电压,从而提高系统的准确性。同时,开发了一种自适应算法来预测和校正系统噪声和观察噪声,从而增强了系统的鲁棒性。实验表明,二阶电路模型的最大估计误差被控制为小于0.20V。在各种仿真条件和干扰因素下,Unscented Kalman滤波的估计误差高达2%,但改进的Kalman滤波算法的估计值低于1.00%,误差减少0.80%,因此铺设了声音电池管理系统后续研究的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号