首页> 外文OA文献 >RailSLAM - Localization of rail vehicles and mapping of geometric railway tracks
【2h】

RailSLAM - Localization of rail vehicles and mapping of geometric railway tracks

机译:Railslam - 铁路车辆的定位和几何铁路轨道的映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The avoidance of train collisions is vital for human safety in railway transportation. Technical approaches are general train control or collision avoidance systems as well as semi-automated or fully autonomous trains. These systems rely on robust and exact train localization as well as an accurate map of the track network. We present Simultaneous Localization and Mapping relying exclusively on train-side sensors. RailSLAM, implemented as a probabilistic filter, uses measurements from multiple sensors and computes a track map. We rely heavily on sensors that are not affected by the harsh environmental conditions often experienced in this application, in particular a low-cost MEMS Inertial Measurement Unit (IMU). Rail vehicle localization methods based on these sensors require a dedicated map with detailed geometric track features in combination with the topological track connections. If this feature map does not exist apriori, it needs to be created. If it does, it may suffer from incompleteness, insufficient accuracy or outdated information. RailSLAM addresses the creation and maintenance of this special track map by a simultaneous estimation of the probabilistic geometric-topological feature-rich track map and the train state. A first proof of concept implementation of mapping is given based on the use of an Extended Kalman Filter with measurements from Global Navigation Satellite System (GNSS) and an IMU.
机译:避免火车碰撞对于铁路运输中的人类安全至关重要。技术方法是普通火车控制或碰撞避免系统以及半自动或全自动列车。这些系统依赖于强大而精确的列车本地化以及轨道网络的准确图。我们同时定位和映射专门在火车侧传感器上依赖。作为概率滤波器实现的Railslam使用来自多个传感器的测量并计算轨道图。我们严重依赖于该应用中经常经历的恶劣环境条件影响的传感器,特别是低成本MEMS惯性测量单元(IMU)。基于这些传感器的轨道车辆本地化方法需要具有详细几何轨道功能的专用地图,与拓扑轨道连接相结合。如果此特征映射不存在Apriori,则需要创建它。如果确实如此,可能会遭受不完整性,准确性或过时的信息。 Railslam通过同时估计概率几何拓扑功能丰富的轨道地图和列车状态,解决了这种特殊轨道地图的创建和维护。基于使用扩展的卡尔曼滤波器具有来自全局导航卫星系统(GNSS)和IMU的测量来给出映射概念实现的第一个证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号