This paper presents numerical analyses of concrete beams under three-point bending. The discrete element methods (DEM) was used to calculate fracture at the aggregate level. Concrete was described as a four-phase material, which was composed of aggregate, cement matrix, interfacial transitional zones (ITZs) and macro-voids. The beam micro-structure was directly taken from our experiments using x-ray micro-tomography. Simulations were carried out with real aggregate modelled as sphere clusters. Numerical results were compared with laboratory outcomes. The special attention was laid on the fracture propagation and some micro-structural phenomena at the aggregate level.
展开▼