首页> 外文OA文献 >Machine Learning Models Coupled with Variational Mode Decomposition: A New Approach for Modeling Daily Rainfall-Runoff
【2h】

Machine Learning Models Coupled with Variational Mode Decomposition: A New Approach for Modeling Daily Rainfall-Runoff

机译:机器学习模型与变分模式分解耦合:一种新的降雨 - 径流建模的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate modeling for nonlinear and nonstationary rainfall-runoff processes is essential for performing hydrologic practices effectively. This paper proposes two hybrid machine learning models (MLMs) coupled with variational mode decomposition (VMD) to enhance the accuracy for daily rainfall-runoff modeling. These hybrid MLMs consist of VMD-based extreme learning machine (VMD-ELM) and VMD-based least squares support vector regression (VMD-LSSVR). The VMD is employed to decompose original input and target time series into sub-time series called intrinsic mode functions (IMFs). The ELM and LSSVR models are selected for developing daily rainfall-runoff models utilizing the IMFs as inputs. The performances of VMD-ELM and VMD-LSSVR models are evaluated utilizing efficiency and effectiveness indices. Their performances are also compared with those of VMD-based artificial neural network (VMD-ANN), discrete wavelet transform (DWT)-based MLMs (DWT-ELM, DWT-LSSVR, and DWT-ANN) and single MLMs (ELM, LSSVR, and ANN). As a result, the VMD-based MLMs provide better accuracy compared with the single MLMs and yield slightly better performance than the DWT-based MLMs. Among all models, the VMD-ELM and VMD-LSSVR models achieve the best performance in daily rainfall-runoff modeling with respect to efficiency and effectiveness. Therefore, the VMD-ELM and VMD-LSSVR models can be an alternative tool for reliable and accurate daily rainfall-runoff modeling.
机译:非线性和非间平降雨流程的准确建模对于有效地进行水文实践至关重要。本文提出了两个混合机器学习模型(MLMS),与变分模式分解(VMD)耦合,以增强日常降雨径流建模的准确性。这些混合动力信息MLM由基于VMD的极端学习机(VMD-ELM)和基于VMD的最小二乘支持向量回归(VMD-LSSVR)。 VMD用于将原始输入和目标时间序列分解为称为内联模式功能(IMF)的子时间序列。选择ELM和LSSVR模型,用于开发利用IMF作为输入的日常降雨径流模型。 VMD-ELM和VMD-LSSVR模型的性能利用效率和有效性指标进行评估。与基于VMD的人工神经网络(VMD-ANN),离散小波变换(DWT)的MLM(DWT-ELM,DWT-LSSVR和DWT-ANN)和单个MLMS(ELM,LSSVR和Ann)。结果,基于VMD的MLMS与单个MLM相比提供了更好的精度,并比基于DWT的MLM产生稍好的性能略微更好。在所有型号中,VMD-ELM和VMD-LSSVR模型在日常降雨径流建模中实现了最佳性能,效率和有效性。因此,VMD-ELM和VMD-LSSVR型号可以是可靠和准确的日落径流建模的替代工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号